
F# Programming

Contents

0.1 Preface . 1
0.1.1 What is Wikibooks? . 1
0.1.2 What is this book? . 1
0.1.3 Who are the authors? . 1
0.1.4 Wikibooks in Class . 1
0.1.5 Happy Reading! . 2

0.2 Introduction . 2
0.2.1 Introducing F# . 2
0.2.2 A Brief History of F# . 2
0.2.3 Why Learn F#? . 2
0.2.4 References . 3

1 F# Basics 4
1.1 Getting Set Up . 4

1.1.1 Windows . 4
1.1.2 Mac OSX, Linux and UNIX . 5

1.2 Basic Concepts . 5
1.2.1 Major Features . 5
1.2.2 Functional Programming Contrasted with Imperative Programming 7
1.2.3 Structure of F# Programs . 8

2 Working With Functions 10
2.1 Declaring Values and Functions . 10

2.1.1 Declaring Variables . 10
2.1.2 Declaring Functions . 10

2.2 Pattern Matching Basics . 13
2.2.1 Pattern Matching Syntax . 13
2.2.2 Alternative Pattern Matching Syntax . 14
2.2.3 Binding Variables with Pattern Matching . 14
2.2.4 Pay Attention to F# Warnings . 14

2.3 Recursion and Recursive Functions . 15
2.3.1 Examples . 15
2.3.2 Tail Recursion . 16
2.3.3 Exercises . 17

i

ii CONTENTS

2.3.4 Additional Reading . 17
2.4 Higher Order Functions . 17

2.4.1 Familiar Higher Order Functions . 17
2.4.2 The |> Operator . 18
2.4.3 Anonymous Functions . 19
2.4.4 Currying and Partial Functions . 19

3 Immutable Data Structures 21
3.1 Option Types . 21

3.1.1 Using Option Types . 21
3.1.2 Pattern Matching Option Types . 21
3.1.3 Other Functions in the Option Module . 21

3.2 Tuples and Records . 22
3.2.1 Defining Tuples . 22
3.2.2 Defining Records . 23

3.3 Lists . 24
3.3.1 Creating Lists . 24
3.3.2 Pattern Matching Lists . 25
3.3.3 Using the List Module . 26
3.3.4 Exercises . 28

3.4 Sequences . 29
3.4.1 Defining Sequences . 29
3.4.2 Iterating Through Sequences Manually . 30
3.4.3 The Seq Module . 30

3.5 Sets and Maps . 31
3.5.1 Sets . 31
3.5.2 Maps . 33
3.5.3 Set and Map Performance . 34

3.6 Discriminated Unions . 34
3.6.1 Creating Discriminated Unions . 34
3.6.2 Union basics: an On/Off switch . 34
3.6.3 Holding Data In Unions: a dimmer switch . 34
3.6.4 Creating Trees . 35
3.6.5 Generalizing Unions For All Datatypes . 35
3.6.6 Examples . 35
3.6.7 Additional Reading . 36

4 Imperative Programming 37
4.1 Mutable Data . 37

4.1.1 mutable Keyword . 37
4.1.2 Ref cells . 37
4.1.3 Encapsulating Mutable State . 38

CONTENTS iii

4.2 Control Flow . 38
4.2.1 Imperative Programming in a Nutshell . 38
4.2.2 if/then Decisions . 39
4.2.3 for Loops Over Ranges . 39
4.2.4 for Loops Over Collections and Sequences . 39
4.2.5 while Loops . 40

4.3 Arrays . 40
4.3.1 Creating Arrays . 40
4.3.2 Working With Arrays . 40
4.3.3 Differences Between Arrays and Lists . 43

4.4 Mutable Collections . 44
4.4.1 List<'T> Class . 44
4.4.2 LinkedList<'T> Class . 44
4.4.3 HashSet<'T>, and Dictionary<'TKey, 'TValue> Classes 45
4.4.4 Differences Between .NET BCL and F# Collections . 46

4.5 Basic I/O . 46
4.5.1 Working with the Console . 46
4.5.2 System.IO Namespace . 47

4.6 Exception Handling . 48
4.6.1 Try/With . 48
4.6.2 Raising Exceptions . 48
4.6.3 Try/Finally . 48
4.6.4 Defining New Exceptions . 49
4.6.5 Exception Handling Constructs . 49

5 Object Oriented Programming 50
5.1 Operator Overloading . 50

5.1.1 Using Operators . 50
5.1.2 Operator Overloading . 50
5.1.3 Defining New Operators . 50

5.2 Classes . 51
5.2.1 Defining an Object . 51
5.2.2 Class Members . 53
5.2.3 Generic classes . 55
5.2.4 Pattern Matching Objects . 55

5.3 Inheritance . 56
5.3.1 Subclasses . 56
5.3.2 Working With Subclasses . 57

5.4 Interfaces . 58
5.4.1 Defining Interfaces . 58
5.4.2 Using Interfaces . 58
5.4.3 Examples . 60

iv CONTENTS

5.5 Events . 61
5.5.1 Defining Events . 61
5.5.2 Adding Callbacks to Event Handlers . 62
5.5.3 Working with EventHandlers Explicitly . 62
5.5.4 Passing State To Callbacks . 63
5.5.5 Retrieving State from Callers . 64
5.5.6 Using the Event Module . 65

5.6 Modules and Namespaces . 66
5.6.1 Defining Modules . 66
5.6.2 Defining Namespaces . 67

6 F# Advanced 70
6.1 Units of Measure . 70

6.1.1 Use Cases . 70
6.1.2 Defining Units . 71
6.1.3 Dimensionless Values . 71
6.1.4 Generalizing Units of Measure . 71
6.1.5 F# PowerPack . 72
6.1.6 External Resources . 72

6.2 Caching . 72
6.2.1 Partial Functions . 72
6.2.2 Memoization . 72
6.2.3 Lazy Values . 73

6.3 Active Patterns . 73
6.3.1 Defining Active Patterns . 73
6.3.2 Additional Resources . 75

6.4 Advanced Data Structures . 75
6.4.1 Stacks . 75
6.4.2 Queues . 76
6.4.3 Binary Search Trees . 77
6.4.4 Lazy Data Structures . 80
6.4.5 Additional Resources . 81

6.5 Reflection . 81
6.5.1 Inspecting Types . 81
6.5.2 Microsoft.FSharp.Reflection Namespace . 82
6.5.3 Working With Attributes . 83

6.6 Computation Expressions . 84
6.6.1 Monad Primer . 84
6.6.2 Defining Computation Expressions . 85
6.6.3 What are Computation Expressions Used For? . 86
6.6.4 Additional Resources . 86

CONTENTS v

7 Multi-threaded and Concurrent Applications 87
7.1 Async Workflows . 87

7.1.1 Defining Async Workflows . 87
7.1.2 Async Extensions Methods . 88
7.1.3 Async Examples . 88
7.1.4 Concurrency with Functional Programming . 89

7.2 MailboxProcessor Class . 90
7.2.1 Defining MailboxProcessors . 90
7.2.2 MailboxProcessor Methods . 91
7.2.3 Two-way Communication . 91
7.2.4 MailboxProcessor Examples . 91

8 F# Tools 93
8.1 Lexing and Parsing . 93

8.1.1 Lexing and Parsing from a High-Level View . 93
8.1.2 Extended Example: Parsing SQL . 93

9 Text and image sources, contributors, and licenses 98
9.1 Text . 98
9.2 Images . 99
9.3 Content license . 99

0.1. PREFACE 1

0.1 Preface

This book was created by volunteers at Wikibooks (http:
//en.wikibooks.org).

0.1.1 What is Wikibooks?

Started in 2003 as an offshoot of the popular Wikipedia
project, Wikibooks is a free, collaborative wiki website
dedicated to creating high-quality textbooks and other ed-
ucational books for students around the world. In addi-
tion to English, Wikibooks is available in over 130 lan-
guages, a complete listing of which can be found at http:
//www.wikibooks.org. Wikibooks is a “wiki”, which
means anybody can edit the content there at any time.
If you find an error or omission in this book, you can
log on to Wikibooks to make corrections and additions
as necessary. All of your changes go live on the website
immediately, so your effort can be enjoyed and utilized
by other readers and editors without delay.
Books at Wikibooks are written by volunteers, and can
be accessed and printed for free from the website. Wiki-
books is operated entirely by donations, and a certain por-
tion of proceeds from sales is returned to the Wikimedia
Foundation to help keep Wikibooks running smoothly.
Because of the low overhead, we are able to produce and
sell books for much cheaper then proprietary textbook
publishers can. This book can be edited by anybody at
any time, including you. We don't make you wait two
years to get a new edition, and we don't stop selling old
versions when a new one comes out.
Note that Wikibooks is not a publisher of books, and
is not responsible for the contributions of its volunteer
editors. PediaPress.com is a print-on-demand publisher
that is also not responsible for the content that it prints.
Please see our disclaimer for more information: http://
en.wikibooks.org/wiki/Wikibooks:General_disclaimer .

0.1.2 What is this book?

This book was generated by the volunteers at Wikibooks,
a team of people from around the world with varying
backgrounds. The people who wrote this book may not
be experts in the field. Some may not even have a passing
familiarity with it. The result of this is that some infor-
mation in this book may be incorrect, out of place, or
misleading. For this reason, you should never rely on a
community-edited Wikibook when dealing in matters of
medical, legal, financial, or other importance. Please see
our disclaimer for more details on this.
Despite thewarning of the last paragraph, however, books
at Wikibooks are continuously edited and improved. If
errors are found they can be corrected immediately. If
you find a problem in one of our books, we ask that you
be bold in fixing it. You don't need anybody’s permission
to help or to make our books better.
Wikibooks runs off the assumption that many eyes can
findmany errors, andmany able hands can fix them. Over
time, with enough community involvement, the books at
Wikibooks will become very high-quality indeed. You
are invited to participate at Wikibooks to help make
our books better. As you find problems in your book
don't just complain about them: Log on and fix them!
This is a kind of proactive and interactive reading expe-
rience that you probably aren't familiar with yet, so log
on to http://en.wikibooks.org and take a look around at
all the possibilities. We promise that we won't bite!

0.1.3 Who are the authors?

The volunteers at Wikibooks come from around the
world and have a wide range of educational and profes-
sional backgrounds. They come to Wikibooks for dif-
ferent reasons, and perform different tasks. Some Wik-
ibookians are prolific authors, some are perceptive edi-
tors, some fancy illustrators, others diligent organizers.
Some Wikibookians find and remove spam, vandalism,
and other nonsense as it appears. Most Wikibookians
perform a combination of these jobs.
It’s difficult to say who are the authors for any particu-
lar book, because so many hands have touched it and so
many changes have beenmade over time. It’s not unheard
of for a book to have been edited thousands of times by
hundreds of authors and editors. You could be one of them
too, if you're interested in helping out.

0.1.4 Wikibooks in Class

Books at Wikibooks are free, and with the proper edit-
ing and preparation they can be used as cost-effective
textbooks in the classroom or for independent learners.
In addition to using a Wikibook as a traditional read-
only learning aide, it can also become an interactive class

http://en.wikibooks.org/
http://en.wikibooks.org/
http://www.wikibooks.org/
http://www.wikibooks.org/
http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer
http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer
http://en.wikibooks.org/

2 CONTENTS

project. Several classes have come to Wikibooks to write
new books and improve old books as part of their nor-
mal course work. In some cases, the books written by
students one year are used to teach students in the same
class next year. Books written can also be used in classes
around the world by students who might not be able to
afford traditional textbooks.

0.1.5 Happy Reading!

We atWikibooks have put a lot of effort into these books,
and we hope that you enjoy reading and learning from
them. We want you to keep in mind that what you are
holding is not a finished product but instead a work in
progress. These books are never “finished” in the tradi-
tional sense, but they are ever-changing and evolving to
meet the needs of readers and learners everywhere. De-
spite this constant change, we feel our books can be reli-
able and high-quality learning tools at a great price, and
we hope you agree. Never hesitate to stop in at Wiki-
books and make some edits of your own. We hope to see
you there one day. Happy reading!

0.2 Introduction

0.2.1 Introducing F#

The F# programming language is part of Microsoft’s
family of .NET languages, which includes C#, Visual Ba-
sic.NET, JScript.NET, and others. As a .NET language,
F# code compiles down to CommonLanguage Infrastruc-
ture (CLI) byte code orMicrosoft Intermediate Language
(MSIL) which runs on top of the Common Language
Runtime (CLR). All .NET languages share this common
intermediate state which allows them to easily interoper-
ate with one another and use the .NET Framework’s Base
Class Library (BCL).
In many ways, it’s easy to think of F# as a .NET imple-
mentation of OCaml, a well-known functional program-
ming language from the ML family of functional pro-
gramming languages. Some of F#'s notable features in-
clude type inference, pattern matching, interactive script-
ing and debugging, higher order functions, and a well-
developed object model which allows programmers to
mix object-oriented and functional programming styles
seamlessly.

0.2.2 A Brief History of F#

There are three dominant programming paradigms used
today: functional, imperative, and object-oriented pro-
gramming. Functional programming is the oldest of the
three, beginning with Information Processing Language
in 1956 and made popular with the appearance of Lisp in

1958. Of course, in the highly competitive world of pro-
gramming languages in the early decades of computing,
imperative programming established itself as the indus-
try norm and preferred choice of scientific researchers
and businesses with the arrival of Fortran in 1957 and
COBOL in 1959.
While imperative languages became popular with busi-
nesses, functional programming languages continued to
be developed primarily as highly specialized niche lan-
guages. For example, the APL programming language,
developed in 1962, was developed to provide a consistent,
mathematical notation for processing arrays. In 1973,
Robin Milner at the University of Edinburgh developed
the ML programming language to develop proof tactics
for the LCF Theorem prover. Lisp continued to be used
for years as the favored language of AI researchers.
ML stands out among other functional programming lan-
guages; its polymorphic functions made it a very ex-
pressive language, while its strong typing and immutable
data structures made it possible to compile ML into
very efficient machine code. ML’s relative success
spawned an entire family of ML-derived languages, in-
cluding Standard ML, Caml, its most famous dialect
called OCaml which unifies functional programming with
object-oriented and imperative styles, and Haskell.
F# was developed in 2005 at Microsoft Research.[1] In
many ways, F# is essentially a .Net implementation of
OCaml, combining the power and expressive syntax of
functional programming with the tens of thousands of
classes which make up the .NET class library.

0.2.3 Why Learn F#?

Functional programming is often regarded as the best-
kept secret of scientific modelers, mathematicians, ar-
tificial intelligence researchers, financial institutions,
graphic designers, CPU designers, compiler program-
mers, and telecommunications engineers. Understand-
ably, functional programming languages tend to be used
in settings that perform heavy number crunching, abstract
symbolic processing, or theorem proving. Of course,
while F# is abstract enough to satisfy the needs of some
highly technical niches, its simple and expressive syn-
tax makes it suitable for CRUD apps, web pages, GUIs,
games, and general-purpose programming.
Programming languages are becoming more functional
every year. Features such as generic programming, type
inference, list comprehensions, functions as values, and
anonymous types, which have traditionally existed as sta-
ples of functional programming, have quickly become
mainstream features of Java, C#, Delphi and even For-
tran. We can expect next-generation programming lan-
guages to continue this trend in the future, providing a
hybrid of both functional and imperative approaches that
meet the evolving needs of modern programming.

https://en.wikibooks.org/wiki/Objective_Caml
https://en.wikibooks.org/wiki/Computer_programming/Functional_programming
https://en.wikibooks.org/wiki/Computer_programming/Functional_programming
https://en.wikibooks.org/wiki/F_Sharp_Programming/Introduction#cite_note-1

0.2. INTRODUCTION 3

F# is valuable to programmers at any skill level; it com-
bines many of the best features of functional and object-
oriented programming styles into a uniquely productive
language.

0.2.4 References
[1] http://research.microsoft.com

http://research.microsoft.com/

Chapter 1

F# Basics

1.1 Getting Set Up

1.1.1 Windows

At the time of this writing, its possible to run F# code
through Visual Studio, through its interactive top-level
F# Interactive (fsi), and compiling from the command
line. This book will assume that users will compile code
through Visual Studio or F# Interactive by default, unless
specifically directed to compile from the command line.

Setup Procedure

F# can integrate with existing installations of Visual Stu-
dio 2008 and is included with Visual Studio 2010. Al-
ternatively, users can download Visual Studio Express or
Community for free, which will provide an F# pioneer
with everything she needs to get started, including inter-
active debugging, breakpoints, watches, Intellisense, and
support for F# projects. Make sure all instances of Visual
Studio and Visual Studio Shell are closed before contin-
uing.
To get started, users should download and install the lat-
est version of the .NET Framework from Microsoft. Af-
terwards, download the latest version of F# from the
F# homepage on Microsoft Research, then execute the
installation wizard. Users should also consider down-
loading and installing the F# PowerPack, which contains
handy extensions to the F# core library.
After successful installation, users will notice an addi-
tional folder in their start menu, “Microsoft F# 2.0.X.X.”
Additionally, users will notice that an entry for “F#
Projects” has been added to the project types menu in Vi-
sual Studio. From here, users can create and run new F#
projects.
It is a good idea to add the executable location (e.g.
c:\fsharp\bin\) to the %PATH% environment variable, so
you can access the compiler and the F# interactive envi-
ronment (FSI) from any location.
As of Visual Studio 2012 the easiest way to get going is to
install Visual Studio 2012 for Web at (even if you want
to do desktop solution). You can then install “F# Tools
for Visual Studio Express 2012 for Web” from . Once

this is done you can create F# projects. Search Nuget for
additional F# project types.

Testing the Install

Hello World executable Lets create the Hello World
standalone application.
Create a text file called hello.fs containing the following
code:
(* filename: hello.fs *) let _ = printf “Hello world”

The underscore is used as a variable name when you are
not interested in the value. All functions in F# return a
value even if the main reason for calling the function is a
side effect.
Save and close the file and then compile this file:
fsc -o hello.exe hello.fs
Now you can run hello.exe to produce the expected out-
put.

F# Interactive Environment Open a command-line
console (hit the “Start” button, click on the “Run” icon
and type cmd and hit ENTER).
Type fsi and hit ENTER. You will see the interactive con-
sole:
Microsoft F# Interactive, (c) Microsoft Corporation, All
Rights Reserved F# Version 1.9.6.2, compiling for .NET
Framework Version v2.0.50727 Please send bug reports
to fsbugs@microsoft.com For help type #help;; >

We can try some basic F# variable assignment (and some
basic maths).
> let x = 5;; val x : int > let y = 20;; val y : int > y + x;;
val it : int = 25

Finally we quit out of the interactive environment
> #quit;;

4

https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://fsharp.org/
http://fsharppowerpack.codeplex.com/

1.2. BASIC CONCEPTS 5

Misc.

Adding to the PATH Environment Variable

1. Go to the Control Panel and choose System.

2. The System Properties dialog will appear. Select
the Advanced tab and click the “Environment Vari-
ables...”.

3. In the System Variables section, select the Path vari-
able from the list and click the “Edit...” button.

4. In the Edit System Variable text box append a
semicolon (;) followed by the executable path (e.g.
;C:\fsharp\bin\)

5. Click on the “OK” button

6. Click on the “OK” button

7. Click on the “Apply” button

Now any command-line console will check in this loca-
tion when you type fsc or fsi.

1.1.2 Mac OSX, Linux and UNIX

F# runs onMac OSX, Linux and other Unix versions with
the latest Mono. This is supported by the F# community
group called the F# Software Foundation.

Installing interpreter and compiler

The F# Software Foundation give latest instructions on
getting started with F# on Linux and Mac. Once built
and/or installed, you can use the “fsharpi” command to
use the command-line interpreter, and “fsharpc” for the
command-line compiler.

MonoDevelop add-in

The F# Software Foundation also give instructions for in-
stalling the Monodevelop support for F#. This comes
with project build system, code completion, and syntax
highlighting support.

Emacs mode and other editors

The F# Software Foundation also give instructions for us-
ing F# with other editors. An emacs mode for F# is also
available on Github.

Xamarin Studio for Mac OSX and Windows

F# runs on Mac OSX and Windows with the latest
Xamarin Studio. This is supported by Microsoft. Xam-
arin Studio is an IDE for developing cross-platform phone
apps, but it runs on Mac OSX and implements F# with an
interactive shell.

1.2 Basic Concepts

Now that we have a working installation of F# we can
explore the syntax of F# and the basics of functional pro-
gramming. We'll start off in the Interactive F Sharp envi-
ronment as this gives us some very valuable type informa-
tion, which helps get to grips with what is actually going
on in F#. Open F# interactive from the start menu, or
open a command-line prompt and type fsi.

1.2.1 Major Features

Fundamental Data Types and Type System

In computer programming, every piece of data has a type,
which, predictably, describes the type of data a program-
mer is working with. In F#, the fundamental data types
are:
F# is a fully object-oriented language, using an object
model based on the .NET Common Language Infrastruc-
ture (CLI). As such, it has a single-inheritance, multiple
interface object model, and allows programmers to de-
clare classes, interfaces, and abstract classes. Notably, it
has full support for generic class, interface, and function
definitions; however, it lacks some OO features found in
other languages, such as mixins and multiple inheritance.
F# also provides a unique array of data structures built
directly into the syntax of the language, which include:

• Unit, the datatype with only one value, equivalent to
void in C-style languages.

• Tuple types, which are ad hoc data structures that
programmers can use to group related values into a
single object.

• Record types, which are similar to tuples, but pro-
vide named fields to access data held by the record
object.

• Discriminated unions, which are used to create very
well-defined type hierarchies and hierarchical data
structures.

• Lists, Maps, and Sets, which represent immutable
versions of a stack, hashtable, and set data struc-
tures, respectively.

http://www.mono-project.com/
http://fsharp.org/
http://fsharp.org/
http://fsharp.org/
http://fsharp.org/
http://fsharp.github.com/fsharpbinding
https://github.com/fsharp/fsharpbinding#emacs-support
https://www.xamarin.com/download
https://en.wikibooks.org/wiki/F_Sharp_Programming/Tuples_and_Records
https://en.wikibooks.org/wiki/F_Sharp_Programming/Tuples_and_Records#Defining_Records
https://en.wikibooks.org/wiki/F_Sharp_Programming/Discriminated_Unions
https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists
https://en.wikibooks.org/wiki/F_Sharp_Programming/Sets_and_Maps#Maps
https://en.wikibooks.org/wiki/F_Sharp_Programming/Sets_and_Maps

6 CHAPTER 1. F# BASICS

• Sequences, which represent a lazy list of items com-
puted on-demand.

• Computation expressions, which serve the same pur-
pose as monads in Haskell, allowing programmers to
write continuation-style code in an imperative style.

All of these features will be further enumerated and ex-
plained in later chapters of this book.
F# is a statically typed language, meaning that the com-
piler knows the datatype of variables and functions at
compile time. F# is also strongly typed, meaning that
a variable bound to ints cannot be rebound to strings at
some later point; an int variable is forever tied to int data.
Unlike C# and VB.Net, F# does not perform implicit
casts, not even safe conversions (such as converting an int
to a int64). F# requires explicit casts to convert between
datatypes, for example:
> let x = 5;; val x : int = 5 > let y = 6L;; val y : int64 =
6L > let z = x + y;; let z = x + y;; ------------^ stdin(5,13):
error FS0001: The type 'int64' does not match the type
'int' > let z = (int64 x) + y;; val z : int64 = 11L

The mathematical operators +, -, /, *, and % are over-
loaded to work with different datatypes, but they require
arguments on each side of the operator to have the same
datatype. We get an error trying to add an int to an int64,
so we have to cast one of our variables above to the other’s
datatype before the program will successfully compile.

Type Inference

Unlike many other strongly typed languages, F# often
does not require programmers to use type annotations
when declaring functions and variables. Instead, F# at-
tempts to work out the types for you, based on the way
that variables are used in code.
For example, let’s take this function:
let average a b = (a + b) / 2.0

We have not used any type annotations: that is, we have
not explicitly told the compiler the data type of a and b,
nor have we indicated the type of the function’s return
value. If F# is a strongly, statically typed language, how
does the compiler know the datatype of anything before-
hand? That’s easy, it uses simple deduction:

• The + and / operators are overloaded to work on dif-
ferent datatypes, but it defaults to integer addition
and integer division without any extra information.

• (a + b) / 2.0, the value in bold has the type float.
Since F# doesn't perform implicit casts, and it re-
quires arguments on both sides of a math operator
to have the same datatype, the value (a + b) must
return a float as well.

• The + operator only returns float when both argu-
ments on each side of the operator are floats, so a
and b must be floats as well.

• Finally, since the return value of float / float is float,
the average function must return a float.

This process is called type-inference. On most occasions,
F# will be able to work out the types of data on its own
without requiring the programmer to explicitly write out
type annotations. This works just as well for small pro-
grams as large programs, and it can be a tremendous time-
saver.
On those occasions where F# cannot work out the types
correctly, the programmer can provide explicit annota-
tions to guide F# in the right direction. For example, as
mentioned above, math operators default to operations on
integers:
> let add x y = x + y;; val add : int -> int -> int

In absence of other information, F# determines that add
takes two integers and returns another integer. If we
wanted to use floats instead, we'd write:
> let add (x : float) (y : float) = x + y;; val add : float ->
float -> float

Pattern Matching

F#'s pattern matching is similar to an if... then or switch
construct in other languages, but is much more power-
ful. Pattern matching allows a programmer to decompose
data structures into their component parts. It matches val-
ues based on the shape of the data structure, for example:
type Proposition = // type with possible expressions ...
note recursion for all expressions except True | True
// essentially this is defining boolean logic | Not of
Proposition | And of Proposition * Proposition | Or of
Proposition * Proposition let rec eval x = match x with
| True -> true // syntax: Pattern-to-match -> Result |
Not(prop) -> not (eval prop) | And(prop1, prop2) ->
(eval prop1) && (eval prop2) | Or(prop1, prop2) -> (eval
prop1) || (eval prop2) let shouldBeFalse = And(Not True,
Not True) let shouldBeTrue = Or(True, Not True) let
complexLogic = And(And(True,Or(Not(True),True)),
Or(And(True, Not(True)), Not(True))) printfn “should-
BeFalse: %b” (eval shouldBeFalse) // prints False printfn
“shouldBeTrue: %b” (eval shouldBeTrue) // prints True
printfn “complexLogic: %b” (eval complexLogic) //
prints False

The eval method uses pattern matching to recursively tra-
verse and evaluate the abstract syntax tree. The rec key-
word marks the function as recursive. Pattern matching
will be explained in more detail in later chapters of this
book.

https://en.wikibooks.org/wiki/F_Sharp_Programming/Sequences
https://en.wikibooks.org/wiki/F_Sharp_Programming/Computation_Expressions

1.2. BASIC CONCEPTS 7

1.2.2 Functional Programming Con-
trasted with Imperative Program-
ming

F# is a mixed-paradigm language: it supports imperative,
object-oriented, and functional styles of writing code,
with heaviest emphasis on the latter.

Immutable Values vs Variables

The first mistake a newcomer to functional programming
makes is thinking that the let construct is equivalent to
assignment. Consider the following code:
let a = 1 (* a is now 1 *) let a = a + 1 (* in F# this throws
an error: Duplicate definition of value 'a' *)

On the surface, this looks exactly like the familiar imper-
ative pseudocode:
a = 1 // a is 1 a = a + 1 // a is 2
However, the nature of the F# code is very different. Ev-
ery let construct introduces a new scope, and binds sym-
bols to values in that scope. If execution escapes this in-
troduced scope, the symbols are restored to their original
meanings. This is clearly not identical to variable state
mutation with assignment.
To clarify, let us desugar the F# code:
let a = 1 in ((* a stands for 1 here *); (let a = (* a still
stands for 1 here *) a + 1 in (* a stands for 2 here *)); (*
a stands for 1 here, again *))

Indeed the code
let a = 1 in (printfn "%i” a; (let a = a + 1 in printfn "%i”
a); printfn "%i” a)

prints out
1 2 1
Once symbols are bound to values, they cannot be as-
signed a new value. The only way to change the meaning
of a bound symbol is to shadow it by introducing a new
binding for this symbol (for example, with a let construct,
as in let a = a + 1), but this shadowing will only have a
localized effect: it will only affect the newly introduced
scope. F# uses so-called 'lexical scoping', which simply
means that one can identify the scope of a binding by sim-
ply looking at the code. Thus the scope of the let a = a +
1 binding in (let a = a + 1 in ..) is limited by the paren-
theses. With lexical scoping, there is no way for a piece
of code to change the value of a bound symbol outside of
itself, such as in the code that has called it.
Immutability is a great concept. Immutability allows pro-
grammers to pass values to functions without worrying
that the function will change the value’s state in unpre-

dictable ways. Additionally, since value can't be mu-
tated, programmers can process data shared across many
threads without fear that the data will be mutated by an-
other process; as a result, programmers can write multi-
threaded code without locks, and a whole class of errors
related to race conditions and dead locking can be elimi-
nated.
Functional programmers generally simulate state by pass-
ing extra parameters to functions; objects are “mutated”
by creating an entirely new instance of an object with the
desired changes and letting the garbage collector throw
away the old instances if they are not needed. The re-
source overheads this style implies are dealt with by shar-
ing structure. For example, changing the head of a singly-
linked list of 1000 integers can be achieved by allocating
a single new integer, reusing the tail of the original list (of
length 999).
For the rare cases when mutation is really needed (for ex-
ample, in number-crunching code which is a performance
bottleneck), F# offers reference types and .NET mutable
collections (such as arrays).

Recursion or Loops?

Imperative programming languages tend to iterate
through collections with loops:
void ProcessItems(Item[] items) { for(int i = 0; i
< items.Length; i++) { Item myItem = items[i];
proc(myItem); // process myItem } }

This admits a direct translation to F# (type annotations
for i and item are omitted because F# can infer them):
let processItems (items : Item []) = for i in 0 ..
items.Length - 1 do let item = items.[i] in proc item

However, the above code is clearly not written in a func-
tional style. One problem with it is that it traverses an
array of items. For many purposes including enumera-
tion, functional programmers would use a different data
structure, a singly linked list. Here is an example of iter-
ating over this data structure with pattern matching:
let rec processItems = function | [] -> () // empty list: end
recursion | head :: tail -> // split list in first item (head)
and rest (tail) proc head; processItems tail // recursively
enumerate list

It is important to note that because the recursive call to
processItems appears as the last expression in the func-
tion, this is an example of so-called tail recursion. The
F# compiler recognizes this pattern and compiles pro-
cessItems to a loop. The processItems function therefore
runs in constant space and does not cause stack overflows.
F# programmers rely on tail recursion to structure their
programs whenever this technique contributes to code

8 CHAPTER 1. F# BASICS

clarity.
A careful reader has noticed that in the above example
proc function was coming from the environment. The
code can be improved and made more general by param-
eterizing it by this function (making proc a parameter):
let rec processItems proc = function | [] -> () | hd :: tl ->
proc hd; processItems proc tl // recursively enumerate
list

This processItems function is indeed so useful that it
has made it into the standard library under the name of
List.iter.
For the sake of completeness it must be mentioned
that F# includes generic versions of List.iter called
Seq.iter (other List.* functions usually have Seq.* coun-
terparts as well) that works on lists, arrays, and all
other collections. F# also includes a looping construct
that works for all collections implementing the Sys-
tem.Collections.Generic.IEnumerable:
for item in collection do process item

Function Composition Rather than Inheritance

Traditional OO uses implementation inheritance exten-
sively; in other words, programmers create base classes
with partial implementation, then build up object hierar-
chies from the base classes while overriding members as
needed. This style has proven to be remarkably effective
since the early 1990s, however this style is not contiguous
with functional programming.
Functional programming aims to build simple, compos-
able abstractions. Since traditional OO can only make an
object’s interface more complex, not simpler, inheritance
is rarely used at all in F#. As a result, F# libraries tend to
have fewer classes and very “flat” object hierarchies, as
opposed to very deep and complex hierarchies found in
equivalent Java or C# applications.
F# tends to rely more on object composition and dele-
gation rather than inheritance to share snippets of imple-
mentation across modules.

Functions as First-Order Types

F# is a functional programming language, meaning that
functions are first-order data types: they can be declared
and used in exactly the same way that any other variable
can be used.
In an imperative language like Visual Basic there is a fun-
damental difference between variables and functions.
Dim myVal as Integer Dim myParam as Integer my-
Param = 2 Public Function MyFunc(Dim param as
Integer) MyFunc = (param * 2) + 7 End Function myVal

= MyFunc(myParam)

Notice the difference in syntax between defining and
evaluating a function and defining and assigning a vari-
able. In the preceding Visual Basic code we could per-
form a number of different actions with a variable we
can:

• create a token (the variable name) and associate it
with a type

• assign it a value

• interrogate its value

• pass it into a function or sub-routine (which is es-
sentially a function that returns no value)

• return it from a function

Functional programming makes no distinction between
values and functions, so we can consider functions to be
equal to all other data types. That means that we can:

• create a token (the function variable name) and as-
sociate it with a type

• assign it a value (the actual calculation)

• interrogate its value (perform the calculation)

• pass a function as a parameter of another function
or sub-routine

• return a function as the result of another function

1.2.3 Structure of F# Programs

A simple, non-trivial F# program has the following parts:
open System (* This is a multi-line comment *) // This
is a single-line comment let rec fib = function | 0 ->
0 | 1 -> 1 | n -> fib (n - 1) + fib (n - 2) let main() =
Console.WriteLine(“fib 5: {0}", (fib 5)) main()

Most F# code files begin with a number of open state-
ments used to import namespaces, allowing program-
mers to reference classes in namespaces without having
to write fully qualified type declarations. This keyword
is functionally equivalent to the using directive in C# and
Imports directive in VB.Net. For example, the Console
class is found under the System namespace; without im-
porting the namespace, a programmer would need to ac-
cess the Console class through its fully qualified name,
System.Console.
The body of the F# file usually contains functions to im-
plement the business logic in an application.
Finally, many F# application exhibit this pattern:

1.2. BASIC CONCEPTS 9

let main() = (* ... This is the main loop. ... *) main()
(* This is a top-level statement because it’s not nested in
any other functions. This calls into the main method to
run the main loop. *)

In general, there is no explicit entry point in an F# appli-
cation. Rather, when an F# application is compiled, the
last file passed to the compiler is assumed to be the entry
point, and the compiler executes all top-level statements
in the file from top to bottom. While its possible to have
any number of top-level statements in the entry point of
a F# program, well-written F# only has a single top-level
statement which calls the main loop of the application.

Chapter 2

Working With Functions

2.1 Declaring Values and Func-
tions

Compared to other .NET languages such as C# and
VB.Net, F# has a somewhat terse and minimalistic syn-
tax. To follow along in this tutorial, open F# Interactive
(fsi) or Visual Studio and run the examples.

2.1.1 Declaring Variables

The most ubiquitous, familiar keyword in F# is the let
keyword, which allows programmers to declare functions
and variables in their applications.
For example:
let x = 5

This declares a variable called x and assigns it the value
5. Naturally, we can write the following:
let x = 5 let y = 10 let z = x + y

z now holds the value 15.
A complete program looks like this:
let x = 5 let y = 10 let z = x + y printfn “x: %i” x printfn
“y: %i” y printfn “z: %i” z

The statement printfn prints text out to the console win-
dow. As you might have guessed, the code above prints
out the values of x, y, and z. This program results in the
following:
x: 5 y: 10 z: 15

Note to F# Interactive users: all statements
in F# Interactive are terminated by ;; (two
semicolons). To run the program above in fsi,
copy and paste the text above into the fsi win-
dow, type ;;, then hit enter.

Values, Not Variables

In F#, “variable” is a misnomer. In reality, all “vari-
ables” in F# are immutable; in other words, once you
bind a “variable” to a value, it’s stuck with that value for-
ever. For that reason, most F# programmers prefer to
use “value” rather than “variable” to describe x, y, and z
above. Behind the scenes, F# actually compiles the “vari-
ables” above as static read-only properties.

2.1.2 Declaring Functions

There is little distinction between functions and values in
F#. You use the same syntax to write a function as you
use to declare a value:
let add x y = x + y

add is the name of the function, and it takes two param-
eters, x and y. Notice that each distinct argument in the
functional declaration is separated by a space. Similarly,
when you execute this function, successive arguments are
separated by a space:
let z = add 5 10

This assigns z the return value of this function, which in
this case happens to be 15.
Naturally, we can pass the return value of functions di-
rectly into other functions, for example:
let add x y = x + y let sub x y = x - y let printThree-
Numbers num1 num2 num3 = printfn “num1: %i” num1
printfn “num2: %i” num2 printfn “num3: %i” num3
printThreeNumbers 5 (add 10 7) (sub 20 8)

This program outputs:
num1: 5 num2: 17 num3: 12
Notice that I have to surround the calls to add and sub
functions with parentheses; this tells F# to treat the value
in parentheses as a single argument.
Otherwise, if we wrote printThreeNumbers 5 add 10 7
sub 20 8, its not only incredibly difficult to read, but it

10

2.1. DECLARING VALUES AND FUNCTIONS 11

actually passes 7 parameters to the function, which is ob-
viously incorrect.

Function Return Values

Unlike many other languages, F# functions do not have
an explicit keyword to return a value. Instead, the return
value of a function is simply the value of the last statement
executed in the function. For example:
let sign num = if num > 0 then “positive” elif num < 0
then “negative” else “zero”

This function takes an integer parameter and returns a
string. As you can imagine, the F# function above is
equivalent to the following C# code:
string Sign(int num) { if (num > 0) return “positive";
else if (num < 0) return “negative"; else return “zero"; }

Just like C#, F# is a strongly typed language. A function
can only return one datatype; for example, the following
F# code will not compile:
let sign num = if num > 0 then “positive” elif num < 0
then “negative” else 0

If you run this code in fsi, you get the following error
message:
> let sign num = if num > 0 then “positive” elif num < 0
then “negative” else 0;; else 0;; ---------^
stdin(7,10): error FS0001: This expression was expected
to have type string but here has type int
The error message is quite explicit: F# has determined
that this function returns a string, but the last line of the
function returns an int, which is an error.
Interestingly, every function in F# has a return value; of
course, programmers don't always write functions that re-
turn useful values. F# has a special datatype called unit,
which has just one possible value: (). Functions return
unit when they don't need to return any value to the pro-
grammer. For example, a function that prints a string to
the console obviously doesn't have a return value:
let helloWorld () = printfn “hello world”

This function takes unit parameter and returns (). You
can think of unit as the equivalent to void in C-style lan-
guages.

How To Read Arrow Notation

All functions and values in F# have a data type. Open F#
Interactive and type the following:
> let addAndMakeString x y = (x + y).ToString();;

F# reports the data type using chained arrow notation as
follows:
val addAndMakeString : x:int -> y:int -> string

Data types are read from left to right. Before muddying
the waters with a more accurate description of how F#
functions are built, consider the basic concept of Arrow
Notation: starting from the left, our function takes two int
inputs and returns a string. A function only has one return
type, which is represented by the rightmost data type in
chained arrow notation.
We can read the following data types as follows:
int -> string

takes one int input, returns a string

float -> float -> float

takes two float inputs, returns another float

int -> string -> float

takes an int and a string input, returns a float

This description is a good introductory way to understand
Arrow Notation for a beginner—and if you are new to F#
feel free to stop here until you get your feet wet. For those
who feel comfortable with this concept as described, the
actual way in which F# is implementing these calls is via
currying the function.

Partial Function Application

While the above description of Arrow Notation is intu-
itive, it is not entirely accurate due to the fact that F#
implicitly curries functions. This means that a function
only ever has a single argument and a single return type,
quite at odds with the previous description of Arrow No-
tation above where in the second and third example two
arguments are passed to a function. In reality, a function
in F# only ever has a single argument and a single return
type. How can this be? Consider this type:
float -> float -> float
since a function of this type is implicitly curried by F#,
there is a two step process to resolve the function when
called with two arguments

1. a function is called with the first argument that re-
turns a function that takes a float and returns a
float. To help clarify currying, lets call this function
funX (note that this naming is just for illustration
purposes—the function that gets created by the run-
time is anonymous).

http://en.wikipedia.org/wiki/Currying

12 CHAPTER 2. WORKING WITH FUNCTIONS

2. the second function ('funX' from step 1 above) is
called with the second argument, returning a float

So, if you provide two floats, the result appears as if the
function takes two arguments, though this is not actually
how the runtime behaves. The concept of currying will
probably strike a developer not steeped in functional con-
cepts as very strange and non-intuitive—even needlessly
redundant and inefficient, so before attempting a further
explanation, consider the benefits of curried functions via
an example:
let addTwoNumbers x y = x + y

this type has the signature of
int -> int -> int
then this function:
let add5ToNumber = addTwoNumbers 5

with the type signature of (int -> int). Note that the body
of add5ToNumber calls addTwoNumbers with only one
argument—not two. It returns a function that takes an
int and returns an int. In other words, add5toNumber
partially applies the addTwoNumbers function.
> let z = add5ToNumber 6;; val z : int = 11

This partial application of a function with multiple argu-
ment exemplifies the power of curried functions. It al-
lows deferred application of the function, allowing for
more modular development and code re-use—we can re-
use the addTwoNumbers function to create a new func-
tion via partial application. From this, you can glean the
power of function currying: it is always breaking down
function application to the smallest possible elements, fa-
cilitating greater chances for code-reuse and modularity.
Take another example, illustrating the use of partially ap-
plied functions as a bookkeeping technique. Note the
type signature of holdOn is a function (int -> int) since
it is the partial application of addTwoNumbers
> let holdOn = addTwoNumbers 7;; val holdOn : (int ->
int) > let okDone = holdOn 8;; val okDone : int = 15

Here we define a new function holdOn on the fly just to
keep track of the first value to add. Then later we apply
this new 'temp' function holdOn with another value which
returns an int. Partially applied functions—enabled by
currying—is a very powerful means of controlling com-
plexity in F#. In short, the reason for the indirection re-
sulting from currying function calls affords partial func-
tion application and all the benefits it supplies. In other
words, the goal of partial function application is enabled
by implicit currying.
So while the Arrow Notation is a good shorthand for un-
derstanding the type signature of a function, it does so

at the price of oversimplification, for a function with the
type signature of
f : int -> int -> int

is actually (when taking into consideration the implicit
currying):
// curried version pseudo-code f: int -> (int -> int)

In other words, f is a function that takes an int and returns
a function that takes an int and returns an int. Moreover,
f: int -> int -> int -> int

is a simplified shorthand for
// curried version pseudo-code f: int -> (int -> (int -> int))

or, in very difficult to decode English: f is a function that
takes an int and returns a function that takes an int that re-
turns a function that takes an int and returns an int. Yikes!

Nested Functions

F# allows programmers to nest functions inside other
functions. Nested functions have a number of applica-
tions, such as hiding the complexity of inner loops:
let sumOfDivisors n = let rec loop current max acc = if
current > max then acc else if n % current = 0 then loop
(current + 1) max (acc + current) else loop (current +
1) max acc let start = 2 let max = n / 2 (* largest factor,
apart from n, cannot be > n / 2 *) let minSum = 1 +
n (* 1 and n are already factors of n *) loop start max
minSum printfn "%d” (sumOfDivisors 10) (* prints 18,
because the sum of 10’s divisors is 1 + 2 + 5 + 10 = 18
*)

The outer function sumOfDivisors makes a call to the in-
ner function loop. Programmers can have an arbitrary
level of nested functions as need requires.

Generic Functions

In programming, a generic function is a function that
returns an indeterminate type t without sacrificing type
safety. A generic type is different from a concrete type
such as an int or a string; a generic type represents a type
to be specified later. Generic functions are useful because
they can be generalized over many different types.
Let’s examine the following function:
let giveMeAThree x = 3

F# derives type information of variables from the way
variables are used in an application, but F# can't constrain

2.2. PATTERN MATCHING BASICS 13

the value x to any particular concrete type, so F# gener-
alizes x to the generic type 'a:
'a -> int

this function takes a generic type 'a and returns
an int.

When you call a generic function, the compiler substitutes
a function’s generic types with the data types of the values
passed to the function. As a demonstration, let’s use the
following function:
let throwAwayFirstInput x y = y

Which has the type 'a -> 'b -> 'b, meaning that the func-
tion takes a generic 'a and a generic 'b and returns a 'b.
Here are some sample inputs and outputs in F# interac-
tive:
> let throwAwayFirstInput x y = y;; val throwAway-
FirstInput : 'a -> 'b -> 'b > throwAwayFirstInput 5
“value";; val it : string = “value” > throwAwayFirstInput
“thrownAway” 10.0;; val it : float = 10.0 > throwAway-
FirstInput 5 30;; val it : int = 30

throwAwayFirstInput 5 “value” calls the function with an
int and a string, which substitutes int for 'a and string for
'b. This changes the data type of throwAwayFirstInput to
int -> string -> string.
throwAwayFirstInput “thrownAway” 10.0 calls the func-
tion with a string and a float, so the function’s data type
changes to string -> float -> float.
throwAwayFirstInput 5 30 just happens to call the func-
tion with two ints, so the function’s data type is inciden-
tally int -> int -> int.
Generic functions are strongly typed. For example:
let throwAwayFirstInput x y = y let add x y = x + y let z
= add 10 (throwAwayFirstInput “this is a string” 5)

The generic function throwAwayFirstInput is defined
again, then the add function is defined and it has the type
int -> int -> int, meaning that this function must be called
with two int parameters.
Then throwAwayFirstInput is called, as a parameter to
add, with two parameters on itself, the first one of type
string and the second of type int. This call to throwAway-
FirstInput ends up having the type string -> int -> int.
Since this function has the return type int, the code works
as expected:
> add 10 (throwAwayFirstInput “this is a string” 5);; val
it : int = 15

However, we get an error when we reverse the order of
the parameters to throwAwayFirstInput:

> add 10 (throwAwayFirstInput 5 “this is a string”);; add
10 (throwAwayFirstInput 5 “this is a string”);; ---------
---------------------^^^^^^^^^^^^^^^^^^^ stdin(13,31):
error FS0001: This expression has type string but is here
used with type int.

The error message is very explicit: The add function takes
two int parameters, but throwAwayFirstInput 5 “this is a
string” has the return type string, so we have a type mis-
match.
Later chapters will demonstrate how to use generics in
creative and interesting ways.

2.2 Pattern Matching Basics

Pattern matching is used for control flow; it allows pro-
grammers to look at a value, test it against a series of
conditions, and perform certain computations depending
on whether that condition is met. While pattern matching
is conceptually similar to a series of if ... then statements
in other languages, F#'s pattern matching is much more
flexible and powerful.

2.2.1 Pattern Matching Syntax

In high level terms, pattern matching resembles this:
match expr with | pat1 -> result1 | pat2 -> result2 | pat3
when expr2 -> result3 | _ -> defaultResult

Each | defines a condition, the -> means “if the condition
is true, return this value...”. The _ is the default pattern,
meaning that it matches anything, sort of like a wildcard.
Using a real example, it’s easy to calculate the nth Fi-
bonacci number using pattern matching syntax:
let rec fib n = match n with | 0 -> 0 | 1 -> 1 | _ -> fib (n -
1) + fib (n - 2)

We can experiment with this function in fsi:
fib 1;; val it : int = 1 > fib 2;; val it : int = 1 > fib 5;; val it
: int = 5 > fib 10;; val it : int = 55

It’s possible to chain together multiple conditions which
return the same value. For example:
> let greeting name = match name with | “Steve” |
“Kristina” | “Matt” -> “Hello!" | “Carlos” | “Maria” ->
“Hola!" | “Worf” -> “nuqneH!" | “Pierre” | “Monique”
-> “Bonjour!" | _ -> “DOES NOT COMPUTE!";; val
greeting : string -> string > greeting “Monique";; val it
: string = “Bonjour!" > greeting “Pierre";; val it : string
= “Bonjour!" > greeting “Kristina";; val it : string =
“Hello!" > greeting “Sakura";; val it : string = “DOES
NOT COMPUTE!"

14 CHAPTER 2. WORKING WITH FUNCTIONS

2.2.2 Alternative PatternMatching Syntax

Pattern matching is such a fundamental feature that F#
has a shorthand syntax for writing pattern matching func-
tions using the function keyword:
let something = function | test1 -> value1 | test2 -> value2
| test3 -> value3

It may not be obvious, but a function defined in this way
actually takes a single input. Here’s a trivial example of
the alternative syntax:
let getPrice = function | “banana” -> 0.79 | “watermelon”
-> 3.49 | “tofu” -> 1.09 | _ -> nan (* nan is a special
value meaning “not a number” *)

Although it doesn't appear as if the function takes any
parameters, it actually has the type string -> float, so it
takes a single string parameter and returns a float. You
call this function in exactly the same way that you'd call
any other function:
> getPrice “tofu";; val it : float = 1.09 > getPrice
“banana";; val it : float = 0.79 > getPrice “apple";; val it :
float = nan

Comparison To Other Languages

F#'s pattern matching syntax is subtly different from
“switch statement” structures in imperative languages,
because each case in a pattern has a return value. For
example, the fib function is equivalent to the following
C#:
int fib(int n) { switch(n) { case 0: return 0; case 1: return
1; default: return fib(n - 1) + fib(n - 2); } }

Like all functions, pattern matches can only have one re-
turn type.

2.2.3 Binding Variables with Pattern
Matching

Pattern matching is not a fancy syntax for a switch struc-
ture found in other languages, because it does not neces-
sarily match against values, it matches against the shape
of data.
F# can automatically bind values to identifiers if they
match certain patterns. This can be especially useful
when using the alternative pattern matching syntax, for
example:
let rec factorial = function | 0 | 1 -> 1 | n -> n * factorial

(n - 1)

The variable n is a pattern. If the factorial function is
called with a 5, the 0 and 1 patterns will fail, but the last
pattern will match and bind the value to the identifier n.

Note to beginners: variable binding in pat-
tern matching often looks strange to begin-
ners, however it is probably the most powerful
and useful feature of F#. Variable binding is
used to decompose data structures into compo-
nent parts and allow programmers to examine
each part; however, data structure decomposi-
tion is too advanced for most F# beginners, and
the concept is difficult to express using simple
types like ints and strings. This book will dis-
cuss how to decompose data structures using
pattern matching in later chapters.

Using Guards within Patterns

Occasionally, it’s not enough to match an input against a
particular value; we can add filters, or guards, to patterns
using the when keyword:
let sign = function | 0 -> 0 | x when x < 0 -> −1 | x when
x > 0 -> 1

The function above returns the sign of a number: −1 for
negative numbers, +1 for positive numbers, and '0' for 0:
> sign −55;; val it : int = −1 > sign 108;; val it : int = 1
> sign 0;; val it : int = 0

Variable binding is useful because it’s often required to
implement guards.

2.2.4 Pay Attention to F# Warnings

Note that F#'s pattern matching works from top to bot-
tom: it tests a value against each pattern, and returns the
value of the first pattern which matches. It is possible for
programmers to make mistakes, such as placing a general
case above a specific (which would prevent the specific
case from ever being matched), or writing a pattern which
doesn't match all possible inputs. F# is smart enough to
notify the programmer of these types of errors.
Example With Incomplete Pattern Matches
> let getCityFromZipcode zip = match zip with | 68528
-> “Lincoln, Nebraska” | 90210 -> “Beverly Hills,
California";; match zip with ----------^^^^ stdin(12,11):
warning FS0025: Incomplete pattern matches on this
expression. For example, the value '0' will not be
matched val getCityFromZipcode : int -> string

2.3. RECURSION AND RECURSIVE FUNCTIONS 15

While this code is valid, F# informs the programmer of
the possible error. F# warns us for a reason:
> getCityFromZipcode 68528;; val it : string = “Lin-
coln, Nebraska” > getCityFromZipcode 32566;; Mi-
crosoft.FSharp.Core.MatchFailureException: Exception
of type 'Microsoft.FSharp.Core.MatchFailureException'
was thrown. at FSI_0018.getCityFromZipcode(Int32
zip) at <StartupCode$FSI_0020>.$FSI_0020._main()
stopped due to error

F# will throw an exception if a pattern isn't matched. The
obvious solution to this problem is to write patterns which
are complete.
On occasions when a function genuinely has a limited
range of inputs, its best to adopt this style:
let apartmentPrices numberOfRooms = match num-
berOfRooms with | 1 -> 500.0 | 2 -> 650.0 | 3 -> 700.0
| _ -> failwith “Only 1-, 2-, and 3- bedroom apartments
available at this complex”

This function now matches any possible input, and will
fail with an explanatory informative error message on in-
valid inputs (this makes sense, because who would rent a
negative 42 bedroom apartment?).
Example With Unmatched Patterns
> let greeting name = match name with | “Steve” ->
“Hello!" | “Carlos” -> “Hola!" | _ -> “DOES NOT
COMPUTE!" | “Pierre” -> “Bonjour";; | “Pierre”
-> “Bonjour";; ------^^^^^^^^^ stdin(22,7): warning
FS0026: This rule will never be matched. val greeting :
string -> string

Since the pattern _ matches anything, and since F# eval-
uates patterns from top to bottom, its not possible for the
code to ever reach the pattern “Pierre”.
Here is a demonstration of this code in fsi:
> greeting “Steve";; val it : string = “Hello!" > greeting
“Ino";; val it : string = “DOES NOT COMPUTE!"
> greeting “Pierre";; val it : string = “DOES NOT
COMPUTE!"

The first two lines return the correct output, because
we've defined a pattern for “Steve” and nothing for “Ino”.
However, the third line is wrong. We have an entry for
“Pierre”, but F# never reaches it. The best solution to this
problem is to deliberately arrange the order of conditions
from most specific to most general.

Note to beginners: The code above contains an
error, but it will not throw an exception. These
are the worst kinds of errors to have, much
worse than an error which throws an exception
and crashes an app, because this error puts our

program in an invalid state and silently contin-
ues on its way. An error like this might oc-
cur early in a program’s life cycle, but may not
show its effects for a long time (it could take
minutes, days, or weeks before someone no-
tices the buggy behavior). Ideally, we want
buggy behavior to be as “close” to its source as
possible, so if a program enters an invalid state,
it should throw an exception immediately. To
prevent this sort of problem it is usually a good
idea to set the compiler flag that treats all warn-
ings as errors; then the code will not compile
thus preventing the problem right at the begin-
ning.

2.3 Recursion and Recursive Func-
tions

A recursive function is a function which calls itself. In-
terestingly, in contrast to many other languages, functions
in F# are not recursive by default. A programmer needs
to explicitly mark a function as recursive using the rec
keyword:
let rec someFunction = ...

2.3.1 Examples

Factorial in F#

The factorial of a non-negative integer n, denoted by n!,
is the product of all positive integers less than or equal to
n. For example, 6! = 6 * 5 * 4 * 3 * 2 * 1 = 720.
In mathematics, the factorial is defined as follows:

fact(n) =

{
1 if n = 0

n× fact(n− 1) if n > 0

Naturally, we'd calculate a factorial by hand using the fol-
lowing:
fact(6) = = 6 * fact(6 - 1) = 6 * 5 * fact(5 - 1) = 6 * 5 *
4 * fact(4 - 1) = 6 * 5 * 4 * 3 * fact(3 - 1) = 6 * 5 * 4 *
3 * 2 * fact(2 - 1) = 6 * 5 * 4 * 3 * 2 * 1 * fact(1 - 1) =
6 * 5 * 4 * 3 * 2 * 1 * 1 = 720
In F#, the factorial function can be written concisely as
follows:
let rec fact x = if x < 1 then 1 else x * fact (x - 1)

But note that this function as it stands returns 1 for all
negative numbers but factorial is undefined for negative
numbers. This means that in real production programs
you must either design the rest of the program so that

16 CHAPTER 2. WORKING WITH FUNCTIONS

factorial can never be called with a a negative number or
trap negative input and throw an exception. Exceptions
will be discussed in a later chapter.
Here’s a complete program:
open System let rec fact x = if x < 1 then 1 else
x * fact (x - 1) (* // can also be written using pat-
tern matching syntax: let rec fact = function | n when n
< 1 -> 1 | n -> n * fact (n - 1) *) Console.WriteLine(fact 6)

Greatest Common Divisor (GCD)

The greatest common divisor, or GCD function, calcu-
lates the largest integer number which evenly divides two
other integers. For example, largest number that evenly
divides 259 and 111 is 37, denoted GCD(259, 111) = 37.
Euclid discovered a remarkably simple recursive algo-
rithm for calculating the GCD of two numbers:

gcd(x, y) =

{
x if y = 0

gcd(y, remainder(x, y)) if x >= y and y > 0

To calculate this by hand, we'd write:
gcd(259, 111) = gcd(111, 259% 111) = gcd(111, 37) =
gcd(37, 111% 37) = gcd(37, 0) = 37
In F#, we can use the % (modulus) operator to calculate
the remainder of two numbers, so naturally we can define
the GCD function in F# as follows:
open System let rec gcd x y = if y = 0 then x else gcd y
(x % y) Console.WriteLine(gcd 259 111) // prints 37

2.3.2 Tail Recursion

Let’s say we have a function A which, at some point, calls
function B. When B finishes executing, the CPU must
continue executing A from the point where it left off. To
“remember” where to return, the function A passes a re-
turn address as an extra argument to B on the stack; B
jumps back to the return address when it finishes execut-
ing. This means calling a function, even one that doesn't
take any parameters, consumes stack space, and it’s ex-
tremely easy for a recursive function to consume all of
the available memory on the stack.
A tail recursive function is a special case of recursion in
which the last instruction executed in the method is the
recursive call. F# and many other functional languages
can optimize tail recursive functions; since no extra work
is performed after the recursive call, there is no need for
the function to remember where it came from, and hence
no reason to allocate additional memory on the stack.
F# optimizes tail-recursive functions by telling the CLR
to drop the current stack frame before executing the target
function. As a result, tail-recursive functions can recurse

indefinitely without consuming stack space.
Here’s non-tail recursive function:
> let rec count n = if n = 1000000 then printfn “done”
else if n % 1000 = 0 then printfn “n: %i” n count (n +
1) (* recursive call *) () (* <-- This function is not tail
recursive because it performs extra work (by returning
unit) after the recursive call is invoked. *);; val count
: int -> unit > count 0;; n: 0 n: 1000 n: 2000 n: 3000
... n: 58000 n: 59000 Session termination detected.
Press Enter to restart. Process is terminated due to
StackOverflowException.

Let’s see what happens if we make the function properly
tail-recursive:
> let rec count n = if n = 1000000 then printfn “done”
else if n % 1000 = 0 then printfn “n: %i” n count (n +
1) (* recursive call *);; val count : int -> unit > count 0;;
n: 0 n: 1000 n: 2000 n: 3000 n: 4000 ... n: 995000 n:
996000 n: 997000 n: 998000 n: 999000 done

If there was no check for n = 1000000, the function would
run indefinitely. It’s important to ensure that all recursive
function have a base case to ensure they terminate even-
tually.

How to Write Tail-Recursive Functions

Let’s imagine that, for our own amusement, we wanted to
implement a multiplication function in terms of the more
fundamental function of addition. For example, we know
that 6 * 4 is the same as 6 + 6 + 6 + 6, or more generally
we can define multiplication recursively as M(a, b) = a +
M(a, b - 1), b > 1. In F#, we'd write this function as:
let rec slowMultiply a b = if b > 1 then a + slowMultiply
a (b - 1) else a

It may not be immediately obvious, but this function is
not tail recursive. It might be more obvious if we rewrote
the function as follows:
let rec slowMultiply a b = if b > 1 then let intermediate
= slowMultiply a (b - 1) (* recursion *) let result = a
+ intermediate (* <-- additional operations *) result else a

The reason it is not tail recursive is because after the re-
cursive call to slowMultiply, the result of the recursion
has to added to a. Remember tail recursion needs the last
operation to be the recursion.
Since the slowMultiply function isn't tail recursive, it
throws a StackOverFlowException for inputs which re-
sult in very deep recursion:
> let rec slowMultiply a b = if b > 1 then a + slowMultiply
a (b - 1) else a;; val slowMultiply : int -> int -> int >
slowMultiply 3 9;; val it : int = 27 > slowMultiply 2

2.4. HIGHER ORDER FUNCTIONS 17

14;; val it : int = 28 > slowMultiply 1 100000;; Process
is terminated due to StackOverflowException. Session
termination detected. Press Enter to restart.

It’s possible to re-write most recursive functions into their
tail-recursive forms using an accumulating parameter:
> let slowMultiply a b = let rec loop acc counter = if
counter > 1 then loop (acc + a) (counter - 1) (* tail
recursive *) else acc loop a b;; val slowMultiply : int
-> int -> int > slowMultiply 3 9;; val it : int = 27 >
slowMultiply 2 14;; val it : int = 28 > slowMultiply 1
100000;; val it : int = 100000

The accumulator parameter in the inner loop holds the
state of our function throughout each recursive iteration.

2.3.3 Exercises

Solutions.

Faster Fib Function

The following function calculates the nth number in the
Fibonacci sequence:
let rec fib = function | n when n=0I -> 0I | n when n=1I
-> 1I | n -> fib(n - 1I) + fib(n - 2I)

Note: The function above has the type val fib
: bigint -> bigint. Previously, we've been us-
ing the int or System.Int32 type to represent
numbers, but this type has a maximum value
of 2,147,483,647. The type bigint is used for
arbitrary size integers such as integers with bil-
lions of digits. The maximum value of bigint is
constrained only by the available memory on a
users machine, but for most practical comput-
ing purposes we can say this type is boundless.

The function above is neither tail-recursive nor partic-
ularly efficient with a computational complexity O(2n).
The tail-recursive form of this function has a computa-
tional complexity of O(n). Re-write the function above
so that it’s tail recursive.
You can verify the correctness of your function using the
following:
fib(0I) = 0 fib(1I) = 1 fib(2I) = 1 fib(3I) = 2
fib(4I) = 3 fib(5I) = 5 fib(10I) = 55 fib(100I) =
354224848179261915075

2.3.4 Additional Reading
• Understanding Tail Recursion
• How can I implement a tail-recursive append?

2.4 Higher Order Functions

A higher-order function is a function that takes another
function as a parameter, or a function that returns another
function as a value, or a function which does both.

2.4.1 Familiar Higher Order Functions

To put higher order functions in perspective, if you've
ever taken a first-semester course on calculus, you're un-
doubtedly familiar with two functions: the limit function
and the derivative function.
The limit function is defined as follows:

lim
x→p

f(x) = L

The limit function, lim, takes another function f(x) as a
parameter, and it returns a value L to represent the limit.
Similarly, the derivative function is defined as follows:

deriv(f(x)) = lim
h→0

f(a+ h)− f(a)

h
= f ′(x)

The derivative function, deriv, takes a function f(x) as a
parameter, and it returns a completely different function
f'(x) as a result.
In this respect, we can correctly assume the limit and
derivative functions are higher-order functions. If we
have a good understanding of higher-order functions in
mathematics, then we can apply the same principles in
F# code.
In F#, we can pass a function to another function just as
if it was a literal value, and we call it just like we call any
other function. For example, here’s a very trivial function:
let passFive f = (f 5)

In F# notation, passFive has the following type:

val passFive : (int -> 'a) -> 'a

In other words, passFive takes a function f, where f must
take an int and return any generic type 'a. Our function
passFive has the return type 'a because we don't know the
return type of f 5 in advance.
open System let square x = x * x let cube x = x * x *
x let sign x = if x > 0 then “positive” else if x < 0 then
“negative” else “zero” let passFive f = (f 5) printfn "%A”
(passFive square) // 25 printfn "%A” (passFive cube) //
125 printfn "%A” (passFive sign) // “positive”

These functions have the following types:

https://en.wikibooks.org/wiki/F_Sharp_Programming/Solutions/Recursion
http://blogs.msdn.com/chrsmith/archive/2008/08/07/understanding-tail-recursion.aspx
http://stackoverflow.com/q/2867514/40516

18 CHAPTER 2. WORKING WITH FUNCTIONS

val square : int -> int val cube : int -> int val sign : int ->
string val passFive : (int -> 'a) -> 'a

Unlike many other languages, F# makes no distinction
between functions and values. We pass functions to other
functions in the exact same way that we pass ints, strings,
and other values.

Creating a Map Function

Amap function converts one type of data to another type
of data. A simple map function in F# looks like this:
let map item converter = converter item

This has the type val map : 'a -> ('a -> 'b) -> 'b. In other
words, map takes two parameters: an item 'a, and a func-
tion that takes an 'a and returns a 'b; map returns a 'b.
Let’s examine the following code:
open System let map x f = f x let square x = x * x
let cubeAndConvertToString x = let temp = x * x * x
temp.ToString() let answer x = if x = true then “yes”
else “no” let first = map 5 square let second = map 5
cubeAndConvertToString let third = map true answer

These functions have the following signatures:
val map : 'a -> ('a -> 'b) -> 'b val square : int -> int val
cubeAndConvertToString : int -> string val answer :
bool -> string val first : int val second : string val third :
string

The first function passes a datatype int and a function with
the signature (int -> int); this means the placeholders 'a
and 'b in the map function both become ints.
The second function passes a datatype int and a function
(int -> string), and map predictably returns a string.
The third function passes a datatype bool and a function
(bool -> string), and map returns a string just as we ex-
pect.
Since our generic code is typesafe, we would get an error
if we wrote:
let fourth = map true square

Because the true constrains our function to a type (bool
-> 'b), but the square function has the type (int -> int), so
it’s obviously incorrect.

The Composition Function (<< operator)

In algebra, the composition function is defined as com-
pose(f, g, x) = f(g(x)), denoted f o g. In F#, the compo-
sition function is defined as follows:

let inline (<<) f g x = f (g x)

Which has the somewhat cumbersome signature val << :
('b -> 'c) -> ('a -> 'b) -> 'a -> 'c.
If I had two functions:

f(x) = x^2
g(x) = -x/2 + 5

And I wanted to model f o g, I could write:
open System let f x = x*x let g x = -x/2.0 + 5.0 let
fog = f << g Console.WriteLine(fog 0.0) // 25 Con-
sole.WriteLine(fog 1.0) // 20.25 Console.WriteLine(fog
2.0) // 16 Console.WriteLine(fog 3.0) // 12.25 Con-
sole.WriteLine(fog 4.0) // 9 Console.WriteLine(fog 5.0)
// 6.25

Note that fog doesn't return a value, it returns another
function whose signature is (float -> float).
Of course, there’s no reason why the compose function
needs to be limited to numbers; since it’s generic, it can
work with any datatype, such as int arrays, tuples, strings,
and so on.
There also exists the >> operator, which similarly per-
forms function composition, but in reverse order. It is
defined as follows:
let inline (>>) f g x = g (f x)

This operator’s signature is as follows: val >> : ('a -> 'b)
-> ('b -> 'c) -> 'a -> 'c.
The advantage of doing composition using the >> oper-
ator is that the functions in the composition are listed in
the order in which they are called.
let gof = f >> g

This will first apply f and then apply g on the result.

2.4.2 The |> Operator

The pipeline operator, |>, is one of the most important
operators in F#. The definition of the pipeline operator is
remarkably simple:
let inline (|>) x f = f x

Let’s take 3 functions:
let square x = x * x let add x y = x + y let toString x =
x.ToString()

Let’s also say we had a complicated function which
squared a number, added five to it, and converted it to
a string? Normally, we'd write this:

2.4. HIGHER ORDER FUNCTIONS 19

let complexFunction x = toString (add 5 (square x))

We can improve the readability of this function somewhat
using the pipeline operator:
let complexFunction x = x |> square |> add 5 |> toString

x is piped to the square function, which is piped to add 5
method, and finally to the toString method.

2.4.3 Anonymous Functions

Until now, all functions shown in this book have been
named. For example, the function above is named add.
F# allows programmers to declare nameless, or anony-
mous functions using the fun keyword.
let complexFunction = 2 (* 2 *) |> (fun x -> x
+ 5) (* 2 + 5 = 7 *) |> (fun x -> x * x) (* 7 * 7 =
49 *) |> (fun x -> x.ToString()) (* 49.ToString = “49” *)

Anonymous functions are convenient and find a use in a
surprising number of places.

A Timer Function

open System let duration f = let timer = new
System.Diagnostics.Stopwatch() timer.Start() let
returnValue = f() printfn “Elapsed Time: %i”
timer.ElapsedMilliseconds returnValue let rec fib =
function | 0 -> 0 | 1 -> 1 | n -> fib (n - 1) + fib (n - 2)
let main() = printfn “fib 5: %i” (duration (fun() -> fib 5
)) printfn “fib 30: %i” (duration (fun() -> fib 30)) main()

The duration function has the type val duration : (unit ->
'a) -> 'a. This program prints:
Elapsed Time: 1 fib 5: 5 Elapsed Time: 5 fib 30: 832040

Note: the actual duration to execute these func-
tions will vary from machine to machine.

2.4.4 Currying and Partial Functions

A fascinating feature in F# is called “currying”, which
means that F# does not require programmers to provide
all of the arguments when calling a function. For exam-
ple, let’s say we have a function:
let add x y = x + y

add takes two integers and returns another integer. In F#
notation, this is written as val add : int -> int -> int
We can define another function as follows:
let addFive = add 5

The addFive function calls the add function with one of its
parameters, so what is the return value of this function?
That’s easy: addFive returns another function which is
waiting for the rest of its arguments. In this case, addFive
returns a function that takes an int and returns another int,
denoted in F# notation as val addFive : (int -> int).
You call addFive just in the same way that you call other
functions:
open System let add x y = x + y let addFive = add 5
Console.WriteLine(addFive 12) // prints 17

How Currying Works

The function let add x y = x + y has the type val add
: int -> int -> int. F# uses the slightly unconventional
arrow notation to denote function signatures for a reason:
arrows notation is intrinsically connected to currying and
anonymous functions. Currying works because, behind
the scenes, F# converts function parameters to a style that
looks like this:
let add = (fun x -> (fun y -> x + y))

The type int -> int -> int is semantically equivalent to (int
-> (int -> int)).
When you call add with no arguments, it returns fun x ->
fun y -> x + y (or equivalently fun x y -> x + y), another
function waiting for the rest of its arguments. Likewise,
when you supply one argument to the function above, say
5, it returns fun y -> 5 + y, another function waiting for
the rest of its arguments, with all occurrences of x being
replaced by the argument 5.
Currying is built on the principle that each argument ac-
tually returns a separate function, which is why calling a
function with only part of its parameters returns another
function. The familiar F# syntax that we've seen so far,
let add x y = x + y, is actually a kind of syntactic sugar
for the explicit currying style shown above.

Two Pattern Matching Syntaxes

You may have wondered why there are two pattern
matching syntaxes:
Both snippets of code are identical, but why does the
shortcut syntax allow programmers to omit the food pa-
rameter in the function definition? The answer is related
to currying: behind the scenes, the F# compiler converts
the function keyword into the following construct:
let getPrice2 = (fun x -> match x with | “banana” -> 0.79
| “watermelon” -> 3.49 | “tofu” -> 1.09 | _ -> nan)

In other words, F# treats the function keyword as an
anonymous function that takes one parameter and returns

20 CHAPTER 2. WORKING WITH FUNCTIONS

one value. The getPrice2 function actually returns an
anonymous function; arguments passed to getPrice2 are
actually applied and evaluated by the anonymous function
instead.

Chapter 3

Immutable Data Structures

3.1 Option Types

An option type can hold two possible values: Some(x)
or None. Option types are frequently used to represent
optional values in calculations, or to indicate whether a
particular computation has succeeded or failed.

3.1.1 Using Option Types

Let’s say we have a function that divides two integers.
Normally, we'd write the function as follows:
let div x y = x / y

This function works just fine, but it’s not safe: it’s possible
to pass an invalid value into this function which results in
a runtime error. Here is a demonstration in fsi:
> let div x y = x / y;; val div : int -> int -> int
> div 10 5;; val it : int = 2 > div 10 0;; Sys-
tem.DivideByZeroException: Attempted to divide by
zero. at <StartupCode$FSI_0035>.$FSI_0035._main()
stopped due to error

div 10 5 executes just fine, but div 10 0 throws a division
by zero exception.
Using option types, we can return Some(value) on a suc-
cessful calculation, or None if the calculation fails:
> let safediv x y = match y with | 0 -> None | _ ->
Some(x/y);; val safediv : int -> int -> int option > safediv
10 5;; val it : int option = Some 2 > safediv 10 0;; val it :
int option = None

Notice an important difference between our div and safe-
div functions:
val div : int -> int -> int val safediv : int -> int -> int option

div returns an int, while safediv returns an int option.
Since our safediv function returns a different data type,
it informs clients of our function that the application has
entered an invalid state.
Option types are conceptually similar to nullable types in

languages like C#, however F# option types do not use
the CLR System.Nullable<T> representation in IL due
to differences in semantics.

3.1.2 Pattern Matching Option Types

Pattern matching option types is as easy as creating them:
the same syntax used to declare an option type is used to
match option types:
> let isFortyTwo = function | Some(42) -> true | Some(_)
| None -> false;; val isFortyTwo : int option -> bool > is-
FortyTwo (Some(43));; val it : bool = false > isFortyTwo
(Some(42));; val it : bool = true > isFortyTwo None;; val
it : bool = false

3.1.3 Other Functions in the Option Mod-
ule

val get : 'a option -> 'a

Returns the value of a Some option.

val isNone : 'a option -> bool

Returns true for a None option, false otherwise.

val isSome : 'a option -> bool

Returns true for a Some option, false other-
wise.

val map : ('a -> 'b) -> 'a option -> 'b option

Given None, returns None. Given Some(x), re-
turns Some(f x), where f is the given mapping
function.

val iter : ('a -> unit) -> 'a option -> unit

Applies the given function to the value of a
Some option, does nothing otherwise.

21

22 CHAPTER 3. IMMUTABLE DATA STRUCTURES

3.2 Tuples and Records

3.2.1 Defining Tuples

A tuple is defined as a comma separated collection of val-
ues. For example, (10, “hello”) is a 2-tuple with the type
(int * string). Tuples are extremely useful for creating ad
hoc data structures which group together related values.
Note that the parentheses are not part of the tuple but it is
often necessary to add them to ensure that the tuple only
includes what you think it includes.
let average (a, b) = (a + b) / 2.0

This function has the type float * float -> float, it takes a
float * float tuple and returns another float.
> let average (a, b) = let sum = a + b sum / 2.0;; val
average : float * float -> float > average (10.0, 20.0);; val
it : float = 15.0

Notice that a tuple is considered a single argument. As a
result, tuples can be used to return multiple values:
Example 1 - a function which multiplies a 3-tuple by a
scalar value to return another 3-tuple.
> let scalarMultiply (s : float) (a, b, c) = (a * s, b * s, c
* s);; val scalarMultiply : float -> float * float * float ->
float * float * float > scalarMultiply 5.0 (6.0, 10.0, 20.0);;
val it : float * float * float = (30.0, 50.0, 100.0)

Example 2 - a function which reverses the input of what-
ever is passed into the function.
> let swap (a, b) = (b, a);; val swap : 'a * 'b -> 'b * 'a >
swap (“Web”, 2.0);; val it : float * string = (2.0, “Web”)
> swap (20, 30);; val it : int * int = (30, 20)

Example 3 - a function which divides two numbers and
returns the remainder simultaneously.
> let divrem x y = match y with | 0 -> None | _ -> Some(x
/ y, x % y);; val divrem : int -> int -> (int * int) option
> divrem 100 20;; (* 100 / 20 = 5 remainder 0 *) val it
: (int * int) option = Some (5, 0) > divrem 6 4;; (* 6 /
4 = 1 remainder 2 *) val it : (int * int) option = Some
(1, 2) > divrem 7 0;; (* 7 / 0 throws a DivisionByZero
exception *) val it : (int * int) option = None

Every tuple has a property called arity, which is the num-
ber of arguments used to define a tuple. For example, an
int * string tuple is made up of two parts, so it has an arity
of 2, a string * string * float has an arity of 3, and so on.

Pattern Matching Tuples

Pattern matching on tuples is easy, because the same syn-
tax used to declare tuple types is also used to match tu-
ples.
Example 1
Let’s say that we have a function greeting that prints out a
custom greeting based on the specified name and/or lan-
guage.
let greeting (name, language) = match (name, lan-
guage) with | (“Steve”, _) -> “Howdy, Steve” | (name,
“English”) -> “Hello, " + name | (name, _) when
language.StartsWith(“Span”) -> “Hola, " + name | (_,
“French”) -> “Bonjour!" | _ -> “DOES NOT COM-
PUTE”

This function has type string * string -> string, meaning
that it takes a 2-tuple and returns a string. We can test
this function in fsi:
> greeting (“Steve”, “English”);; val it : string =
“Howdy, Steve” > greeting (“Pierre”, “French”);; val it
: string = “Bonjour!" > greeting (“Maria”, “Spanish”);;
val it : string = “Hola, Maria” > greeting (“Rocko”,
“Esperanto”);; val it : string = “DOESNOTCOMPUTE”

Example 2
We can conveniently match against the shape of a tuple
using the alternative pattern matching syntax:
> let getLocation = function | (0, 0) -> “origin” | (0, y)
-> “on the y-axis at y=" + y.ToString() | (x, 0) -> “on
the x-axis at x=" + x.ToString() | (x, y) -> “at x=" +
x.ToString() + ", y=" + y.ToString() ;; val getLocation :
int * int -> string > getLocation (0, 0);; val it : string =
“origin” > getLocation (0, −1);; val it : string = “on the
y-axis at y=−1” > getLocation (5, −10);; val it : string
= “at x=5, y=−10” > getLocation (7, 0);; val it : string =
“on the x-axis at x=7”

fst and snd

F# has two built-in functions, fst and snd, which return
the first and second items in a 2-tuple. These functions
are defined as follows:
let fst (a, b) = a let snd (a, b) = b

They have the following types:
val fst : 'a * 'b -> 'a val snd : 'a * 'b -> 'b

Here are a few examples in FSI:
> fst (1, 10);; val it : int = 1 > snd (1, 10);; val it : int =
10 > fst (“hello”, “world”);; val it : string = “hello” > snd

3.2. TUPLES AND RECORDS 23

(“hello”, “world”);; val it : string = “world” > fst (“Web”,
2.0);; val it : string = “Web” > snd (50, 100);; val it : int
= 100

Assigning Multiple Variables Simultaneously

Tuples can be used to assign multiple values simultane-
ously. This is the same as tuple unpacking in Python.
The syntax for doing so is:
let val1, val2, ... valN = (expr1, expr2, ... exprN)

In other words, you assign a comma-separated list of N
values to an N-tuple. Here’s an example in FSI:
> let x, y = (1, 2);; val y : int val x : int > x;; val it : int =
1 > y;; val it : int = 2

The number of values being assigned must match the ar-
ity of tuple returned from the function, otherwise F# will
raise an exception:
> let x, y = (1, 2, 3);; let x, y = (1, 2, 3);; ------------
^^^^^^^^ stdin(18,13): error FS0001: Type mismatch.
Expecting a 'a * 'b but given a 'a * 'b * 'c. The tuples
have differing lengths of 2 and 3.

Tuples and the .NET Framework

From a point of view F#, all methods in the .NET Base
Class Library take a single argument, which is a tuple of
varying types and arity. For example:
Some methods, such as the System.Math.DivRem shown
above, and others such as System.Int32.TryParse return
multiple through output variables. F# allows program-
mers to omit an output variable; using this calling con-
vention, F# will return results of a function as a tuple, for
example:
> System.Int32.TryParse(“3”);; val it : bool * int = (true,
3) > System.Math.DivRem(10, 7);; val it : int * int = (1,
3)

3.2.2 Defining Records

A record is similar to a tuple, except it contains named
fields. A record is defined using the syntax:
type recordName = { [fieldName : dataType] + }

+ means the element must occur one or more
times.

Here’s a simple record:

type website = { Title : string; Url : string }

Unlike a tuple, a record is explicitly defined as its own
type using the type keyword, and record fields are defined
as a semicolon-separated list. (Inmanyways, a record can
be thought of as a simple class.)
A website record is created by specifying the record’s
fields as follows:
> let homepage = { Title = “Google"; Url =
"http://www.google.com" };; val homepage : web-
site

Note that F# determines a record’s type by the name and
type of its fields, not the order that fields are used. For
example, while the record above is defined with Title first
and Url second, it’s perfectly legitimate to write:
> { Url = "http://www.microsoft.com/"; Ti-
tle = “Microsoft Corporation” };; val it : web-
site = {Title = “Microsoft Corporation"; Url =
"http://www.microsoft.com/";}

It’s easy to access a record’s properties using dot notation:
> let homepage = { Title = “Wikibooks"; Url =
"http://www.wikibooks.org/" };; val homepage : website
> homepage.Title;; val it : string = “Wikibooks” > home-
page.Url;; val it : string = "http://www.wikibooks.org/"

Cloning Records

Records are immutable types, which means that instances
of records cannot be modified. However, records can be
cloned conveniently using the clone syntax:
type coords = { X : float; Y : float } let setX item newX
= { item with X = newX }

The method setX has the type coords -> float -> coords.
The with keyword creates a clone of item and set its X
property to newX.
> let start = { X = 1.0; Y = 2.0 };; val start : coords > let
finish = setX start 15.5;; val finish : coords > start;; val it
: coords = {X = 1.0; Y = 2.0;} > finish;; val it : coords =
{X = 15.5; Y = 2.0;}

Notice that the setX creates a copy of the record, it doesn't
actually mutate the original record instance.
Here’s a more complete program:
type TransactionItem = { Name : string; ID : int;
ProcessedText : string; IsProcessed : bool } let getItem
name id = { Name = name; ID = id; ProcessedText
= null; IsProcessed = false } let processItem item = {
item with ProcessedText = “Done"; IsProcessed = true

https://en.wikibooks.org/wiki/F_Sharp_Programming/Classes

24 CHAPTER 3. IMMUTABLE DATA STRUCTURES

} let printItem msg item = printfn "%s: %A” msg item
let main() = let preProcessedItem = getItem “Steve” 5
let postProcessedItem = processItem preProcessedItem
printItem “preProcessed” preProcessedItem printItem
“postProcessed” postProcessedItem main()

This program processes an instance of the Transaction-
Item class and prints the results. This program outputs
the following:
preProcessed: {Name = “Steve"; ID = 5; ProcessedText
= null; IsProcessed = false;} postProcessed: {Name =
“Steve"; ID = 5; ProcessedText = “Done"; IsProcessed
= true;}

Pattern Matching Records

We can pattern match on records just as easily as tuples:
open System type coords = { X : float; Y : float } let
getQuadrant = function | { X = 0.0; Y = 0.0 } -> “Origin”
| item when item.X >= 0.0 && item.Y >= 0.0 -> “I” |
item when item.X <= 0.0 && item.Y >= 0.0 -> “II” |
item when item.X <= 0.0 && item.Y <= 0.0 -> “III” |
item when item.X >= 0.0 && item.Y <= 0.0 -> “IV”
let testCoords (x, y) = let item = { X = x; Y = y }
printfn "(%f, %f) is in quadrant %s” x y (getQuadrant
item) let main() = testCoords(0.0, 0.0) testCoords(1.0,
1.0) testCoords(−1.0, 1.0) testCoords(−1.0, −1.0)
testCoords(1.0, −1.0) Console.ReadKey(true) |> ignore
main()

Note that pattern cases are defined with the same syntax
used to create a record (as shown in the first case), or using
guards (as shown in the remaining cases). Unfortunately,
programmers cannot use the clone syntax in pattern cases,
so a case such as | { item with X = 0 } -> “y-axis” will not
compile.
The program above outputs:
(0.000000, 0.000000) is in quadrant Origin (1.000000,
1.000000) is in quadrant I (−1.000000, 1.000000) is in
quadrant II (−1.000000, −1.000000) is in quadrant III
(1.000000, −1.000000) is in quadrant IV

3.3 Lists

A list is an ordered collection of related values, and is
roughly equivalent to a linked list data structure used
in many other languages. F# provides a module, Mi-
crosoft.FSharp.Collections.List, for common operations
on lists; this module is imported automatically by F#, so
the List module is already accessible from every F# ap-
plication.

3.3.1 Creating Lists

Using List Literals

There are a variety of ways to create lists in F#, the most
straightforward method being a semicolon-delimited se-
quence of values. Here’s a list of numbers in fsi:
> let numbers = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10];; val numbers
: int list > numbers;; val it : int list = [1; 2; 3; 4; 5; 6; 7;
8; 9; 10]

Notice that all values in a list must have the same type:
> [1; 2; 3; 4; “cat"; 6; 7];; -------------^^^^^^
stdin(120,14): error FS0001: This expression has
type string but is here used with type int.

Using the :: (“cons”) Operator

It is very common to build lists up by prepending or con-
sing a value to an existing list using the :: operator:
> 1 :: 2 :: 3 :: [];; val it : int list = [1; 2; 3]

Note: the [] is an empty list. By itself, it has the
type 'T list; since it is used with ints, it has the
type int list.

The :: operator prepends items to a list, returning a new
list. It is a right-associative operator with the following
type:

val inline (::) : 'T -> 'T list -> 'T list

This operator does not actually mutate lists, it creates an
entirely new list with the prepended element in the front.
Here’s an example in fsi:
> let x = 1 :: 2 :: 3 :: 4 :: [];; val x : int list > let y = 12 ::
x;; val y : int list > x;; val it : int list = [1; 2; 3; 4] > y;;
val it : int list = [12; 1; 2; 3; 4]

Consing creates a new list, but it reuses nodes from the
old list, so consing a list is an extremely efficient O(1)
operation.

Using List.init

The List module contains a useful method, List.init,
which has the type

val init : int -> (int -> 'T) -> 'T list

The first argument is the desired length of the new list,
and the second argument is an initializer function which
generates items in the list. List.init is used as follows:

3.3. LISTS 25

> List.init 5 (fun index -> index * 3);; val it : int list =
[0; 3; 6; 9; 12] > List.init 5 (fun index -> (index, index
* index, index * index * index));; val it : (int * int * int)
list = [(0, 0, 0); (1, 1, 1); (2, 4, 8); (3, 9, 27); (4, 16, 64)]

F# calls the initializer function 5 times with the index of
each item in the list, starting at index 0.

Using List Comprehensions

List comprehensions refers to special syntactic constructs
in some languages used for generating lists. F# has an
expressive list comprehension syntax, which comes in two
forms, ranges and generators.
Ranges have the constructs [start .. end] and [start .. step
.. end]. For example:
> [1 .. 10];; val it : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
> [1 .. 2 .. 10];; val it : int list = [1; 3; 5; 7; 9] > ['a' ..
's’];; val it : char list = ['a'; 'b'; 'c'; 'd'; 'e'; 'f'; 'g'; 'h'; 'i'; 'j';
'k'; 'l'; 'm'; 'n'; 'o'; 'p'; 'q'; 'r'; 's’]

Generators have the construct [for x in collection do ...
yield expr], and they are much more flexible than ranges.
For example:
> [for a in 1 .. 10 do yield (a * a)];; val it : int list = [1;
4; 9; 16; 25; 36; 49; 64; 81; 100] > [for a in 1 .. 3 do for
b in 3 .. 7 do yield (a, b)];; val it : (int * int) list = [(1,
3); (1, 4); (1, 5); (1, 6); (1, 7); (2, 3); (2, 4); (2, 5); (2,
6); (2, 7); (3, 3); (3, 4); (3, 5); (3, 6); (3, 7)] > [for a in
1 .. 100 do if a % 3 = 0 && a % 5 = 0 then yield a];; val
it : int list = [15; 30; 45; 60; 75; 90]

it’s possible to loop over any collection, not just numbers.
This example loops over a char list:
> let x = ['a' .. 'f'];; val x : char list > [for a in x do yield
[a; a; a]];; val it : char list list = [['a'; 'a'; 'a']; ['b'; 'b'; 'b'];
['c'; 'c'; 'c']; ['d'; 'd'; 'd']; ['e'; 'e'; 'e']; ['f'; 'f'; 'f']]

Note that the yield keyword pushes a single value into
a list. Another keyword, yield!, pushes a collection of
values into the list. The yield! keyword is used as follows:
> [for a in 1 .. 5 do yield! [a .. a + 3]];; val it : int list =
[1; 2; 3; 4; 2; 3; 4; 5; 3; 4; 5; 6; 4; 5; 6; 7; 5; 6; 7; 8]

It’s possible to mix the yield and yield! keywords:
> [for a in 1 .. 5 do match a with | 3 -> yield! ["hello";
“world"] | _ -> yield a.ToString()];; val it : string list =
["1"; “2"; “hello"; “world"; “4"; “5"]

Alternative List Comprehension Syntax The sam-
ples above use the yield keyword explicitly, however F#

provides a slightly different arrow-based syntax for list
comprehensions:
> [for a in 1 .. 5 -> a * a];; val it : int list = [1; 4; 9; 16;
25] > [for a in 1 .. 5 do for b in 1 .. 3 -> a, b];; val it :
(int * int) list = [(1, 1); (1, 2); (1, 3); (2, 1); (2, 2); (2, 3);
(3, 1); (3, 2); (3, 3); (4, 1); (4, 2); (4, 3); (5, 1); (5, 2);
(5, 3)] > [for a in 1 .. 5 ->> [1 .. 3]];; val it : int list =
[1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3]

-> and ->> are equivalent to the yield and yield! opera-
tors respectively. While it’s still common to see list com-
prehensions expressed using -> and ->>, those constructs
will not be emphasized in this book since they have been
deprecated in favor of yield and yield!.

3.3.2 Pattern Matching Lists

You use the same syntax to match against lists that you
use to create lists. Here’s a simple program:
let rec sum total = function | [] -> total | hd :: tl -> sum
(hd + total) tl let main() = let numbers = [1 .. 5] let
sumOfNumbers = sum 0 numbers printfn “sumOfNum-
bers: %i” sumOfNumbers main()

The sum method has the type val sum : int -> int list -
> int. It recursively enumerates through the list, adding
each item in the list to the value total. Step by step, the
function works as follows:

Reversing Lists

Frequently, we use recursion and patternmatching to gen-
erate new lists from existing lists. A simple example is
reversing a list:
let reverse l = let rec loop acc = function | [] -> acc | hd
:: tl -> loop (hd :: acc) tl loop [] l

Note to beginners: the pattern seen above is
very common. Often, when we iterate through
lists, we want to build up a new list. To do this
recursively, we use an accumulating parame-
ter (which is called acc above) which holds our
new list as we generate it. It’s also very com-
mon to use a nested function, usually named
innerXXXXX or loop, to hide the implemen-
tation details of the function from clients (in
other words, clients should not have to pass in
their own accumulating parameter).

reverse has the type val reverse : 'a list -> 'a list. You'd
use this function as follows:
> reverse [1 .. 5];; val it : int list = [5; 4; 3; 2; 1]

26 CHAPTER 3. IMMUTABLE DATA STRUCTURES

This simple function works because items are always
prepended to the accumulating parameter acc, resulting
in series of recursive calls as follows:
List.rev is a built-in function for reversing a list:
> List.rev [1 .. 5];; val it : int list = [5; 4; 3; 2; 1]

Filtering Lists

Oftentimes, we want to filter a list for certain values. We
can write a filter function as follows:
open System let rec filter predicate = function | [] -> []
| hd :: tl -> match predicate hd with | true -> hd::filter
predicate tl | false -> filter predicate tl let main() = let
filteredNumbers = [1 .. 10] |> filter (fun x -> x % 2 = 0)
printfn “filteredNumbers: %A” filteredNumbers main()

The filter method has the type val filter : ('a -> bool) ->
'a list -> 'a list. The program above outputs:
filteredNumbers: [2; 4; 6; 8; 10]
We can make the filter above tail-recursive with a slight
modification:
let filter predicate l = let rec loop acc = function | []
-> acc | hd :: tl -> match predicate hd with | true ->
loop (hd :: acc) tl | false -> loop (acc) tl List.rev (loop [] l)

Note: Since accumulating parameters often
build up lists in reverse order, it’s very com-
mon to see List.rev called immediately before
returning a list from a function to put it in cor-
rect order.

Mapping Lists

We can write a function which maps a list to another list:
open System let rec map converter = function | [] -> []
| hd :: tl -> converter hd::map converter tl let main()
= let mappedNumbers = [1 .. 10] |> map (fun x ->
(x * x).ToString()) printfn “mappedNumbers: %A”
mappedNumbers main()

map has the type val map : ('a -> 'b) -> 'a list -> 'b list.
The program above outputs:
mappedNumbers: ["1"; “4"; “9"; “16"; “25"; “36"; “49";
“64"; “81"; “100"]
A tail-recursive map function can be written as:
let map converter l = let rec loop acc = function | [] ->
acc | hd :: tl -> loop (converter hd :: acc) tl List.rev (loop
[] l)

Like the example above, we use the accumulating-param-
and-reverse pattern to make the function tail recursive.

3.3.3 Using the List Module

Although a reverse, filter, and map method were imple-
mented above, it’s much more convenient to use F#'s
built-in functions:
List.rev reverses a list:
> List.rev [1 .. 5];; val it : int list = [5; 4; 3; 2; 1]

List.filter filters a list:
> [1 .. 10] |> List.filter (fun x -> x % 2 = 0);; val it : int
list = [2; 4; 6; 8; 10]

List.map maps a list from one type to another:
> [1 .. 10] |> List.map (fun x -> (x * x).ToString());; val
it : string list = ["1"; “4"; “9"; “16"; “25"; “36"; “49";
“64"; “81"; “100"]

List.append and the @ Operator

List.append has the type:
val append : 'T list -> 'T list -> 'T list

As you can imagine, the append functions appends one
list to another. The @ operator is an infix operator which
performs the same function:
let first = [1; 2; 3;] let second = [4; 5; 6;] let combined1
= first @ second (* returns [1; 2; 3; 4; 5; 6] *) let
combined2 = List.append first second (* returns [1; 2; 3;
4; 5; 6] *)

Since lists are immutable, appending two lists together
requires copying all of the elements of the lists to create
a brand new list. However, since lists are immutable, it’s
only necessary to copy the elements of the first list; the
second list does not need to be copied. Represented in
memory, appending two lists can be diagrammed as fol-
lows:
We start with the following:
first = 1 :: 2 :: 3 :: [] second = 4 :: 5 :: 6 :: []
Appending the two lists, first @ second, results in the fol-
lowing:
first = 1 :: 2 :: 3 :: [] ______ ______/ \/ combined = 1 ::
2 :: 3 :: second (copied)
In other words, F# prepends a copy of first to second to
create the combined list. This hypothesis can be verified
using the following in fsi:

3.3. LISTS 27

> let first = [1; 2; 3;] let second = [4; 5; 6;] let combined
= first @ second let secondHalf = List.tail (List.tail
(List.tail combined));; val first : int list val second : int
list val combined : int list val secondHalf : int list >
System.Object.ReferenceEquals(second, secondHalf);;
val it : bool = true

The two lists second and secondHalf are literally the same
object in memory, meaning F# reused the nodes from
second when constructing the new list combined.
Appending two lists, list1 and list2 has a space and time
complexity of O(list1.Length).

List.choose

List.choose has the following definition:
val choose : ('T -> 'U option) -> 'T list -> 'U list

The choose method is clever because it filters and maps a
list simultaneously:
> [1 .. 10] |> List.choose (fun x -> match x % 2 with | 0
-> Some(x, x*x, x*x*x) | _ -> None);; val it : (int * int
* int) list = [(2, 4, 8); (4, 16, 64); (6, 36, 216); (8, 64,
512); (10, 100, 1000)]

choose filters for items that return Some and maps them
to another value in a single step.

List.fold and List.foldBack

List.fold and List.foldBack have the following definitions:
val fold : ('State -> 'T -> 'State) -> 'State -> 'T list ->
'State val foldBack : ('T -> 'State -> 'State) -> 'T list ->
'State -> 'State

A “fold” operation applies a function to each element in
a list, aggregates the result of the function in an accumu-
lator variable, and returns the accumulator as the result
of the fold operation. The 'State type represents the ac-
cumulated value, it is the output of one round of the cal-
culation and input for the next round. This description
makes fold operations sound more complicated, but the
implementation is actually very simple:
(* List.fold implementation *) let rec fold (f : 'State ->
'T -> 'State) (seed : 'State) = function | [] -> seed | hd :: tl
-> fold f (f seed hd) tl (* List.foldBack implementation
*) let rec foldBack (f : 'T -> 'State -> 'State) (items : 'T
list) (seed : 'State) = match items with | [] -> seed | hd ::
tl -> f hd (foldBack f tl seed)

fold applies a function to each element in the list from
left to right, while foldBack applies a function to each el-
ement from right to left. Let’s examine the fold functions

in more technical detail using the following example:
let input = [2; 4; 6; 8; 10] let f accumulator input =
accumulator * input let seed = 1 let output = List.fold f
seed input

The value of output is 3840. This table demonstrates how
output was calculated:
List.fold passes an accumulator with an item from the list
into a function. The output of the function is passed as
the accumulator for the next item.
As shown above, the fold function processes the list from
the first item to the last item in the list, or left to right. As
you can imagine, List.foldBack works the same way, but
it operates on lists from right to left. Given a fold function
f and a list [1; 2; 3; 4; 5], the fold methods transform our
lists in the following ways:

fold: f (f (f (f (f (f seed 1) 2) 3) 4) 5
foldBack: f 1 (f 2 (f 3(f 4(f 5 seed))))

There are several other functions in the List module re-
lated to folding:

• fold2 and foldBack2: folds two lists together simul-
taneously.

• reduce and reduceBack: same as fold and foldBack,
except it uses the first (or last) element in the list as
the seed value.

• scan and scanBack: similar to fold and foldBack,
except it returns all of the intermediate values as a
list rather than the final accumulated value.

Fold functions can be surprisingly useful:
Summing the numbers 1 - 100
let x = [1 .. 100] |> List.fold (+) 0 (* returns 5050 *)

In F#, mathematical operators are no different from func-
tions. As shown above, we can actually pass the addition
operator to the fold function, because the + operator has
the definition int -> int -> int.
Computing a factorial
let factorial n = [1I .. n] |> List.fold (*) 1I let x =
factorial 13I (* returns 6227020800I *)

Computing population standard deviation
let stddev (input : float list) = let sampleSize = float
input.Length let mean = (input |> List.fold (+) 0.0) /
sampleSize let differenceOfSquares = input |> List.fold
(fun sum item -> sum + Math.Pow(item - mean, 2.0)
) 0.0 let variance = differenceOfSquares / sampleSize
Math.Sqrt(variance) let x = stddev [5.0; 6.0; 8.0; 9.0]
(* returns 1.58113883 *)

28 CHAPTER 3. IMMUTABLE DATA STRUCTURES

List.find and List.tryFind

List.find and List.tryfind have the following types:
val find : ('T -> bool) -> 'T list -> 'T val tryFind : ('T ->
bool) -> 'T list -> 'T option

The find and tryFind methods return the first item in the
list for which the search function returns true. They only
differ as follows: if no items are found that meet the
search function, find throws a KeyNotFoundException,
while tryfind returns None.
The two functions are used as follows:
> let cities = ["Bellevue"; “Omaha"; “Lincoln"; “Papil-
lion"; “Fremont"];; val cities : string list = ["Bellevue";
“Omaha"; “Lincoln"; “Papillion"; “Fremont"] > let
findStringContaining text (items : string list) = items
|> List.find(fun item -> item.Contains(text));; val find-
StringContaining : string -> string list -> string > let
findStringContaining2 text (items : string list) = items
|> List.tryFind(fun item -> item.Contains(text));; val
findStringContaining2 : string -> string list -> string
option > findStringContaining “Papi” cities;; val it : string
= “Papillion” > findStringContaining “Hastings” cities;;
System.Collections.Generic.KeyNotFoundException:
The given key was not present in the dictionary. at Mi-
crosoft.FSharp.Collections.ListModule.find[T](FastFunc`2
predicate, FSharpList`1 list) at <Startup-
Code$FSI_0007>.$FSI_0007.main@() stopped due
to error > findStringContaining2 “Hastings” cities;; val it
: string option = None

3.3.4 Exercises

Solutions.

Pair and Unpair

Write two functions with the following definitions:
val pair : 'a list -> ('a * 'a) list val unpair : ('a * 'a) list ->
'a list

The pair function should convert a list into a list of pairs
as follows:
pair [1 .. 10] = [(1, 2); (3, 4); (5, 6); (7, 8); (9, 10)] pair
[“one"; “two"; “three"; “four"; “five”] = [(“one”, “two”);
(“three”, “four”)]

The unpair function should convert a list of pairs back
into a traditional list as follows:
unpair [(1, 2); (3, 4); (5, 6)] = [1; 2; 3; 4; 5; 6] unpair
[(“one”, “two”); (“three”, “four”)] = ["one"; “two";
“three"; “four"]

Expand a List

Write a function with the following type definition:
val expand : 'a list -> 'a list list

The expand function should expand a list as follows:
expand [1 .. 5] = [[1; 2; 3; 4; 5]; [2; 3; 4; 5]; [3; 4;
5]; [4; 5]; [5]] expand [“monkey"; “kitty"; “bunny";
“rat”] = [["monkey"; “kitty"; “bunny"; “rat"]; ["kitty";
“bunny"; “rat"]; ["bunny"; “rat"]; ["rat"]]

Greatest common divisor on lists

The task is to calculate the greatest common divisor of a
list of integers.
The first step is to write a function which should have the
following type:
val gcd : int -> int -> int

The gcd function should take two integers and return their
greatest common divisor. Hint: Use Euler’s algorithm
gcd 15 25 = 5

The second step is to use the gcd function to calculate the
greatest common divisor of an int list.
val gcdl : int list -> int

The gcdl function should work like this:
gcdl [15; 75; 20] = 5

If the list is empty the result shall be 0.

Basic Mergesort Algorithm

The goal of this exercise is to implement the mergesort
algorithm to sort a list in F#. When I talk about sorting, it
means sorting in an ascending order. If you're not familiar
with the mergesort algorithm, it works like this:

• Split: Divide the list in two equally large parts

• Sort: Sort those parts

• Merge: Sort while merging (hence the name)

Note that the algorithmworks recursively. It will first split
the list. The next step is to sort both parts. To do that, they
will be split again and so on. This will basically continue
until the original list is scrambled up completely. Then

https://en.wikibooks.org/wiki/F_Sharp_Programming/Solutions/Lists

3.4. SEQUENCES 29

recursion will do it’s magic and assemble the list from the
bottom. This might seem confusing at first, but you will
learn a lot about how recursion works, when there’s more
than one function involved
The split function

val split : 'a list -> 'a list * 'a list

The split function will work like this.
split [2; 8; 5; 3] = ([5; 2], [8; 3])

The split’s will be returned as a tuple. The split function
doesn't need to sort the lists though.
The merge function
The next step is merging. We now want to merge the
split’s together into a sorted list assuming that both split’s
themselves are already sorted. The merge function will
take a tuple of two already sorted lists and recursively cre-
ate a sorted list:
val merge : 'a list * 'a list -> 'a list

Example:
merge ([2; 5], [3; 8]) = [2; 3; 5; 8]

It is important to notice that the merge function will only
work if both split’s are already sorted. It will make it’s
implementation a lot easier. Assuming both split’s are
sorted, we can just look at the first element of both split’s
and only compare which one of them is smaller. To en-
sure this is the case we will write one last function.
The msort function
You can think of it as the function organising the correct
execution of the algorithm. It uses the previously imple-
mented functions, so it’s able to take a random list and
return the sorted list.
val msort : 'a list -> 'a list

How to implement msort:
If the list is empty or if the list has only one element, we
don't need to do anything to it and can immediately return
it, because we don't need to sort it.
If that’s not the case, we need to apply our algorithm to it.
First split the list into a tuple of two, then merge the tuple
while recursively sorting both arguments of the tuple

3.4 Sequences

Sequences, commonly called sequence expressions, are
similar to lists: both data structures are used to represent
an ordered collection of values. However, unlike lists, el-
ements in a sequence are computed as they are needed (or

“lazily”), rather than computed all at once. This gives se-
quences some interesting properties, such as the capacity
to represent infinite data structures.

3.4.1 Defining Sequences

Sequences are defined using the syntax:
seq { expr }

Similar to lists, sequences can be constructed using ranges
and comprehensions:
> seq { 1 .. 10 };; (* seq ranges *) val it : seq<int> = seq
[1; 2; 3; 4; ...] > seq { 1 .. 2 .. 10 };; (* seq ranges *) val
it : seq<int> = seq [1; 3; 5; 7; ...] > seq {10 .. −1 .. 0};;
(* descending *) val it : seq<int> = seq [10; 9; 8; 7; ...]
> seq { for a in 1 .. 10 do yield a, a*a, a*a*a };; (* seq
comprehensions *) val it : seq<int * int * int> = seq [(1,
1, 1); (2, 4, 8); (3, 9, 27); (4, 16, 64); ...]

Sequences have an interesting property which sets them
apart from lists: elements in the sequence are lazily eval-
uated, meaning that F# does not compute values in a se-
quence until the values are actually needed. This is in
contrast to lists, where F# computes the value of all ele-
ments in a list on declaration. As a demonstration, com-
pare the following:
> let intList = [for a in 1 .. 10 do printfn “intList: %i”
a yield a] let intSeq = seq { for a in 1 .. 10 do printfn
“intSeq: %i” a yield a };; val intList : int list val intSeq :
seq<int> intList: 1 intList: 2 intList: 3 intList: 4 intList:
5 intList: 6 intList: 7 intList: 8 intList: 9 intList: 10 >
Seq.item 3 intSeq;; intSeq: 1 intSeq: 2 intSeq: 3 intSeq:
4 val it : int = 4 > Seq.item 7 intSeq;; intSeq: 1 intSeq: 2
intSeq: 3 intSeq: 4 intSeq: 5 intSeq: 6 intSeq: 7 intSeq:
8 val it : int = 8

The list is created on declaration, but elements in the se-
quence are created as they are needed.
As a result, sequences are able to represent a data struc-
ture with an arbitrary number of elements:
> seq { 1I .. 1000000000000I };; val it : seq<bigint> =
seq [1I; 2I; 3I; 4I; ...]

The sequence above represents a list with one trillion el-
ements in it. That does not mean the sequence actually
contains one trillion elements, but it can potentially hold
one trillion elements. By comparison, it would not be
possible to create a list [1I .. 1000000000000I] since
the .NET runtime would attempt to create all one trillion
elements up front, which would certainly consume all of
the available memory on a system before the operation
completed.
Additionally, sequences can represent an infinite number

30 CHAPTER 3. IMMUTABLE DATA STRUCTURES

of elements:
> let allEvens = let rec loop x = seq { yield x; yield! loop
(x + 2) } loop 0;; > for a in (Seq.take 5 allEvens) do
printfn "%i” a;; 0 2 4 6 8 val it : unit = ()

Notice the definition of allEvens does not terminate. The
function Seq.take returns the first n elements of elements
of the sequence. If we attempted to loop through all of
the elements, fsi would print indefinitely.

Note: sequences are implemented as state ma-
chines by the F# compiler. In reality, theyman-
age state internally and hold only the last gen-
erated item in memory at a time. Memory us-
age is constant for creating and traversing se-
quences of any length.

3.4.2 Iterating Through Sequences Manu-
ally

The .NET Base Class Library (BCL) contains two inter-
faces in the System.Collections.Generic namespace:
type IEnumerable<'a> = interface (* Returns an enu-
merator that iterates through a collection *) member
GetEnumerator<'a> : unit -> IEnumerator<'a> end type
IEnumerator<'a> = interface (* Advances to the next
element in the sequences. Returns true if the enumerator
was successfully advanced to the next element; false if
the enumerator has passed the end of the collection. *)
member MoveNext : unit -> bool (* Gets the current
element in the collection. *) member Current : 'a (* Sets
the enumerator to its initial position, which is before the
first element in the collection. *) member Reset : unit ->
unit end

The seq type is defined as follows:
type seq<'a> = Sys-
tem.Collections.Generic.IEnumerable<'a>

As you can see, seq is not a unique F# type,
but rather another name for the built-in Sys-
tem.Collections.Generic.IEnumerable interface. Since
seq/IEnumerable is a native .NET type, it was designed
to be used in a more imperative style, which can be
demonstrated as follows:
open System open System.Collections let evens = seq
{ 0 .. 2 .. 10 } (* returns IEnumerable<int> *) let
main() = let evensEnumerator = evens.GetEnumerator()
(* returns IEnumerator<int> *) while evensEnumera-
tor.MoveNext() do printfn “evensEnumerator.Current:
%i” evensEnumerator.Current Console.ReadKey(true)
|> ignore main()

This program outputs:

evensEnumerator.Current: 0 evensEnumerator.Current:
2 evensEnumerator.Current: 4 evensEnumera-
tor.Current: 6 evensEnumerator.Current: 8 evensEnu-
merator.Current: 10
Behind the scenes, .NET converts every for loop over a
collection into an explicit while loop. In other words, the
following two pieces of code compile down to the same
bytecode:
All collections which can be used with the for key-
word implement the IEnumerable<'a> interface, a con-
cept which will be discussed later in this book.

3.4.3 The Seq Module

Similar to the List modules, the Seq module contains a
number of useful functions for operating on sequences:
val append : seq<'T> -> seq<'T> -> seq<'T>

Appends one sequence onto another sequence.

> let test = Seq.append (seq{1..3}) (seq{4..7});; val it :
seq<int> = seq [1; 2; 3; 4; ...]

val choose : ('T -> 'U option) -> seq<'T> -> seq<'U>

Filters and maps a sequence to another se-
quence.

> let thisworks = seq { for nm in [Some(“James”); None;
Some(“John”)] |> Seq.choose id -> nm.Length } val it :
seq<int> = seq [5; 4]

val distinct : seq<'T> -> seq<'T>

Returns a sequence that filters out duplicate en-
tries.

> let dist = Seq.distinct (seq[1;2;2;6;3;2]) val it : seq<int>
= seq [1; 2; 6; 3]

val exists : ('T -> bool) -> seq<'T> -> bool

Determines if an element exists in a sequence.

> let equalsTwo x = x=2 > let exist = Seq.exists
equalsTwo (seq{3..9}) val equalsTwo : int -> bool val it
: bool = false

val filter : ('T -> bool) -> seq<'T> -> seq<'T>

Builds a new sequence consisting of elements
filtered from the input sequence.

http://msdn.microsoft.com/en-us/library/system.collections.generic.aspx
https://en.wikibooks.org/wiki/F_Sharp_Programming/Interfaces

3.5. SETS AND MAPS 31

> Seq.filter (fun x-> x%2 = 0) (seq{0..9}) val it :
seq<int> = seq [0; 2; 4; 6; ...]

val fold : ('State -> 'T -> 'State) -> 'State -> seq<'T>
-> 'State

Repeatedly applies a function to each element
in the sequence from left to right.

> let sumSeq sequence1 = Seq.fold (fun acc elem -> acc
+ elem) 0 sequence1 Seq.init 10 (fun index -> index *
index) |> sumSeq |> printfn “The sum of the elements is
%d.” > The sum of the elements is 285. val sumSeq :
seq<int> -> int

Note: sequences can only be read in a forward-
only manner, so there is no corresponding fold-
Back function as found in the List and Array
modules.

val initInfinite : (int -> 'T) -> seq<'T>

Generates a sequence consisting of an infinite
number of elements.

> Seq.initInfinite (fun x -> x*x) val it : seq<int> = seq
[0; 1; 4; 9; ...]

val map : ('T -> 'U) -> seq<'T> -> seq<'U>

Maps a sequence of type 'a to type 'b.

> Seq.map (fun x->x*x+2) (seq[3;5;4;3]) val it :
seq<int> = seq [11; 27; 18; 11]

val item : int -> seq<'T> -> 'T

Returns the nth value of a sequence.

> Seq.item 3 (seq {for n in 2..9 do yield n}) val it : int = 5

val take : int -> seq<'T> -> seq<'T>

Returns a new sequence consisting of the first
n elements of the input sequence.

> Seq.take 3 (seq{1..6}) val it : seq<int> = seq [1; 2; 3]

val takeWhile : ('T -> bool) -> seq<'T> -> seq<'T>

Return a sequence that, when iterated, yields
elements of the underlying sequence while the
given predicate returns true, and returns no fur-
ther elements.

> let sequenciaMenorqDez = Seq.takeWhile (fun elem
-> elem < 10) (seq {for i in 0..20 do yield i+1}) val se-
quenciaMenorqDez : seq<int> > sequenciaMenorqDez;;
val it : seq<int> = seq [1; 2; 3; 4; ...]

val unfold : ('State -> ('T * 'State) option) -> 'State
seed -> seq<'T>

The opposite of fold: this function generates a
sequence as long as the generator function re-
turns Some.

> let fibs = (0I, 1I) |> Seq.unfold (fun (a, b) ->
Some(a, (b, a + b)));; val fibs : seq<bigint> > Seq.iter
(fun x -> printf "%O " x) (Seq.take 20 fibs);; 0 1 1 2 3
5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

The generator function in unfold expects a return type
of ('T * 'State) option. The first value of the tuple is in-
serted as an element into the sequence, the second value
of the tuple is passed as the accumulator. The fibs func-
tion is clever for its brevity, but it’s hard to understand
if you've never seen an unfold function. The following
demonstrates unfold in a more straightforward way:
> let test = 1 |> Seq.unfold (fun x -> if x <= 5 then
Some(sprintf “x: %i” x, x + 1) else None);; val test :
seq<string> > Seq.iter (fun x -> printfn "%s” x) test;; x:
1 x: 2 x: 3 x: 4 x: 5

Often, it’s preferable to generate sequences using seq
comprehensions rather than the unfold.

3.5 Sets and Maps

In addition to lists and sequences, F# provides two related
immutable data structures called sets and maps. Unlike
lists, sets and maps are unordered data structures, mean-
ing that these collections do not preserve the order of ele-
ments as they are inserted, nor do they permit duplicates.

3.5.1 Sets

A set in F# is just a container for items. Sets do not pre-
serve the order in which items are inserted, nor do they
allow duplicate entries to be inserted into the collection.
Sets can be created in a variety of ways:
Adding an item to an empty set The Set module con-
tains a useful function Set.empty which returns an empty
set to start with.
Conveniently, all instances of sets have an Add function
with the type val Add : 'a -> Set<'a>. In other words, our
Add returns a new set containing our new item, which
makes it easy to add items together in this fashion:

32 CHAPTER 3. IMMUTABLE DATA STRUCTURES

> Set.empty.Add(1).Add(2).Add(7);; val it : Set<int> =
set [1; 2; 7]

Converting lists and sequences into sets Additionally,
the we can use Set.ofList and Set.ofSeq to convert an en-
tire collection into a set:
> Set.ofList ["Mercury"; “Venus"; “Earth"; “Mars";
“Jupiter"; “Saturn"; “Uranus"; “Neptune"];; val it :
Set<string> = set ["Earth"; “Jupiter"; “Mars"; “Mer-
cury"; ...]

The example above demonstrates the unordered nature of
sets.

The Set Module

The Microsoft.FSharp.Collections.Set module contains a
variety of useful methods for working with sets.
val add : 'a -> Set<'a> -> Set<'a>

Return a new set with an element added to the
set. No exception is raised if the set already
contains the given element.

val compare : Set<'a> -> Set<'a> -> int

Compare two sets. Places sets into a total or-
der.

val count : Set<'a> -> int

Return the number of elements in the set.
Same as “size”.

val difference : Set<'a> -> Set<'a> -> Set<'a>

Return a new set with the elements of the sec-
ond set removed from the first. That is a set
containing only those items from the first set
that are not also in the second set.

> let a = Set.ofSeq [1 .. 10] let b = Set.ofSeq [5 .. 15];;
val a : Set<int> val b : Set<int> > Set.difference a b;; val
it : Set<int> = set [1; 2; 3; 4] > a - b;; (* The '-' operator
is equivalent to Set.difference *) val it : Set<int> = set
[1; 2; 3; 4]

val exists : ('a -> bool) -> Set<'a> -> bool

Test if any element of the collection satisfies
the given predicate.

val filter : ('a -> bool) -> Set<'a> -> Set<'a>

Return a new collection containing only the el-
ements of the collection for which the given
predicate returns “true”.

val intersect : Set<'a> -> Set<'a> -> Set<'a>

Compute the intersection, or overlap, of the
two sets.

> let a = Set.ofSeq [1 .. 10] let b = Set.ofSeq [5 .. 15
];; val a : Set<int> val b : Set<int> > Set.iter (fun x ->
printf "%O " x) (Set.intersect a b);; 5 6 7 8 9 10

val map : ('a -> 'b) -> Set<'a> -> Set<'b>

Return a new collection containing the results
of applying the given function to each element
of the input set.

val contains: 'a -> Set<'a> -> bool

Evaluates to true if the given element is in the
given set.

val remove : 'a -> Set<'a> -> Set<'a>

Return a new set with the given element re-
moved. No exception is raised if the set doesn't
contain the given element.

val count: Set<'a> -> int

Return the number of elements in the set.

val isSubset : Set<'a> -> Set<'a> -> bool

Evaluates to “true” if all elements of the first
set are in the second.

val isProperSubset : Set<'a> -> Set<'a> -> bool

Evaluates to “true” if all elements of the first
set are in the second, and there is at least one
element in the second set which is not in the
first.

> let a = Set.ofSeq [1 .. 10] let b = Set.ofSeq [5 ..
15] let c = Set.ofSeq [2; 4; 5; 9];; val a : Set<int>
val b : Set<int> val c : Set<int> > Set.isSubset c a;; (*
All elements of 'c' exist in 'a' *) val it : bool = true >
Set.isSubset c b;; (* Not all of the elements of 'c' exist in
'b' *);; val it : bool = false

val union : Set<'a> -> Set<'a> -> Set<'a>

http://msdn.microsoft.com/en-us/library/ee340244.aspx

3.5. SETS AND MAPS 33

Compute the union of the two sets.

> let a = Set.ofSeq [1 .. 10] let b = Set.ofSeq [5 .. 15
];; val a : Set<int> val b : Set<int> > Set.iter (fun x ->
printf "%O " x) (Set.union a b);; 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 val it : unit = () > Set.iter (fun x -> printf
"%O " x) (a + b);; (* '+' computes union *) 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

Examples

open System let shakespeare = “O Romeo, Romeo!
wherefore art thou Romeo?" let shakespeareArray =
shakespeare.Split([| ' '; ','; '!'; '?' |], StringSplitOp-
tions.RemoveEmptyEntries) let shakespeareSet = shake-
speareArray |> Set.ofSeq let main() = printfn “shake-
speare: %A” shakespeare let printCollection msg coll =
printfn "%s:" msg Seq.iteri (fun index item -> printfn
" %i: %O” index item) coll printCollection “shake-
speareArray” shakespeareArray printCollection “shake-
speareSet” shakespeareSet Console.ReadKey(true) |> ig-
nore main()
shakespeare: “O Romeo, Romeo! wherefore art thou
Romeo?" shakespeareArray: 0: O 1: Romeo 2: Romeo
3: wherefore 4: art 5: thou 6: Romeo shakespeareSet: 0:
O 1: Romeo 2: art 3: thou 4: wherefore

3.5.2 Maps

A map is a special kind of set: it associates keys with
values. A map is created in a similar way to sets:
> let holidays = Map.empty. (* Start with empty Map *)
Add(“Christmas”, “Dec. 25”). Add(“Halloween”, “Oct.
31”). Add(“Darwin Day”, “Feb. 12”). Add(“World Ve-
gan Day”, “Nov. 1”);; val holidays : Map<string,string>
> let monkeys = [“Squirrel Monkey”, “Simia sciureus";
“Marmoset”, “Callithrix jacchus"; “Macaque”, “Macaca
mulatta"; “Gibbon”, “Hylobates lar"; “Gorilla”, “Gorilla
gorilla"; “Humans”, “Homo sapiens"; “Chimpanzee”,
“Pan troglodytes”] |> Map.ofList;; (* Convert list to
Map *) val monkeys : Map<string,string>

You can use the .[key] to access elements in the map:
> holidays.["Christmas"];; val it : string = “Dec. 25”
> monkeys.["Marmoset"];; val it : string = “Callithrix
jacchus”

The Map Module

The Microsoft.FSharp.Collections.Map module handles
map operations.
val add : 'key -> 'a -> Map<'key,'a> ->
Map<'key,'a>

Return a new map with the binding added to
the given map.

val empty<'key,'a> : Map<'key,'a>

Returns an empty map.

val exists : ('key -> 'a -> bool) -> Map<'key,'a> ->
bool

Return true if the given predicate returns true
for one of the bindings in the map.

val filter : ('key -> 'a -> bool) -> Map<'key,'a> ->
Map<'key,'a>

Build a new map containing only the bindings
for which the given predicate returns true.

val find : 'key -> Map<'key,'a> -> 'a

Lookup an element in the map, raising
KeyNotFoundException if no binding exists in
the map.

val containsKey: 'key -> Map<'key,'a> -> bool

Test if an element is in the domain of the map.

val remove : 'key -> Map<'key,'a> ->Map<'key,'a>

Remove an element from the domain of the
map. No exception is raised if the element is
not present.

val tryFind : 'key -> Map<'key,'a> -> 'a option

Lookup an element in the map, returning a
Some value if the element is in the domain of
the map and None if not.

Examples

open System let capitals = [(“Australia”, “Canberra”);
(“Canada”, “Ottawa”); (“China”, “Beijing”); (“Den-
mark”, “Copenhagen”); (“Egypt”, “Cairo”); (“Finland”,
“Helsinki”); (“France”, “Paris”); (“Germany”, “Berlin”);
(“India”, “New Delhi”); (“Japan”, “Tokyo”); (“Mex-
ico”, “Mexico City”); (“Russia”, “Moscow”); (“Slove-
nia”, “Ljubljana”); (“Spain”, “Madrid”); (“Sweden”,
“Stockholm”); (“Taiwan”, “Taipei”); (“USA”, “Wash-
ington D.C.”)] |> Map.ofList let rec main() = Con-
sole.Write(“Find a capital by country (type 'q' to

https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.map-module-%255bfsharp%255d

34 CHAPTER 3. IMMUTABLE DATA STRUCTURES

quit): ") match Console.ReadLine() with | “q” -> Con-
sole.WriteLine(“Bye bye”) | country -> match cap-
itals.TryFind(country) with | Some(capital) -> Con-
sole.WriteLine(“The capital of {0} is {1}\n”, coun-
try, capital) | None -> Console.WriteLine(“Country not
found.\n”) main() (* loop again *) main()
Find a capital by country (type 'q' to quit): Egypt The cap-
ital of Egypt is Cairo Find a capital by country (type 'q' to
quit): Slovenia The capital of Slovenia is Ljubljana Find a
capital by country (type 'q' to quit): Latveria Country not
found. Find a capital by country (type 'q' to quit): USA
The capital of USA is Washington D.C. Find a capital by
country (type 'q' to quit): q Bye bye

3.5.3 Set and Map Performance

F# sets and maps are implemented as immutable AVL
trees, an efficient data structure which forms a self-
balancing binary tree. AVL trees are well-known for their
efficiency, in which they can search, insert, and delete el-
ements in the tree in O(log n) time, where n is the number
of elements in the tree.

3.6 Discriminated Unions

Discriminated unions, also called tagged unions, rep-
resent a finite, well-defined set of choices. Discriminated
unions are often the tool of choice for building up more
complicated data structures including linked lists and a
wide range of trees.

3.6.1 Creating Discriminated Unions

Discriminated unions are defined using the following syn-
tax:
type unionName = | Case1 | Case2 of datatype | ...

By convention, union names start with a lowercase char-
acter, and union cases are written in PascalCase.

3.6.2 Union basics: an On/Off switch

Let’s say we have a light switch. For most of us, a light
switch has two possible states: the light switch can be ON,
or it can be OFF. We can use an F# union to model our
light switch’s state as follows:
type switchstate = | On | Off

We've defined a union called switchstate which has two
cases, On and Off. You can create and use instances of
switchstate as follows:

type switchstate = | On | Off let x = On (* creates an
instance of switchstate *) let y = Off (* creates another
instance of switchstate *) let main() = printfn “x: %A” x
printfn “y: %A” y main()

This program has the following types:
type switchstate = On | Off val x : switchstate val y :
switchstate

It outputs the following:
x: On y: Off
Notice that we create an instance of switchstate simply
by using the name of its cases; this is because, in a literal
sense, the cases of a union are constructors. As you may
have guessed, since we use the same syntax for construct-
ing objects as for matching them, we can pattern match
on unions in the following way:
type switchstate = | On | Off let toggle = function (*
pattern matching input *) | On -> Off | Off -> On let
main() = let x = On let y = Off let z = toggle y printfn
“x: %A” x printfn “y: %A” y printfn “z: %A” z printfn
“toggle z: %A” (toggle z) main()

The function toggle has the type val toggle : switchstate
-> switchstate.
This program has the following output:
x: On y: Off z: On toggle z: Off

3.6.3 Holding Data In Unions: a dimmer
switch

The example above is kept deliberately simple. In fact,
in many ways, the discriminated union defined above
doesn't appear much different from an enum value. How-
ever, let’s say we wanted to change our light switch model
into a model of a dimmer switch, or in other words a light
switch that allows users to adjust a lightbulb’s power out-
put from 0% to 100% power.
We can modify our union above to accommodate three
possible states: On, Off, and an adjustable value between
0 and 100:
type switchstate = | On | Off | Adjustable of float

We've added a new case, Adjustable of float. This case
is fundamentally the same as the others, except it takes a
single float value in its constructor:
open System type switchstate = | On | Off | Adjustable
of float let toggle = function | On -> Off | Off -> On
| Adjustable(brightness) -> (* Matches any switchstate
of type Adjustable. Binds the value passed into the
constructor to the variable 'brightness’. Toggles dimness
around the halfway point. *) let pivot = 0.5 if bright-

3.6. DISCRIMINATED UNIONS 35

ness <= pivot then Adjustable(brightness + pivot) else
Adjustable(brightness - pivot) let main() = let x = On
let y = Off let z = Adjustable(0.25) (* takes a float in
constructor *) printfn “x: %A” x printfn “y: %A” y
printfn “z: %A” z printfn “toggle z: %A” (toggle z)
Console.ReadKey(true) |> ignore main()

This program outputs:
x: On y: Off z: Adjustable 0.25 toggle z: Adjustable 0.75

3.6.4 Creating Trees

Discriminated unions can easily model a wide variety of
trees and hierarchical data structures.
For example, let’s consider the following binary tree:
Each node of our tree contains exactly two branches, and
each branch can either be a integer or another tree. We
can represent this tree as follows:
type tree = | Leaf of int | Node of tree * tree

We can create an instance of the tree above using the fol-
lowing code:
open System type tree = | Leaf of int | Node of tree
* tree let simpleTree = Node(Leaf 1, Node(Leaf 2,
Node(Node(Leaf 4, Leaf 5), Leaf 3))) let main()
= printfn "%A” simpleTree Console.ReadKey(true) |>
ignore main()

This program outputs the following:
Node (Leaf 1,Node (Leaf 2,Node (Node (Leaf 4,Leaf
5),Leaf 3)))
Very often, we want to recursively enumerate through
all of the nodes in a tree structure. For example, if we
wanted to count the total number of Leaf nodes in our
tree, we can use:
open System type tree = | Leaf of int | Node of tree
* tree let simpleTree = Node (Leaf 1, Node (Leaf 2,
Node (Node (Leaf 4, Leaf 5), Leaf 3))) let countLeaves
tree = let rec loop sum = function | Leaf(_) -> sum +
1 | Node(tree1, tree2) -> sum + (loop 0 tree1) + (loop
0 tree2) loop 0 tree let main() = printfn “countLeaves
simpleTree: %i” (countLeaves simpleTree) Con-
sole.ReadKey(true) |> ignore main()

This program outputs:
countLeaves simpleTree: 5

3.6.5 Generalizing Unions For All
Datatypes

Note that our binary tree above only operates on integers.
Its possible to construct unions which are generalized to
operate on all possible data types. We can modify the
definition of our union to the following:
type 'a tree = | Leaf of 'a | Node of 'a tree * 'a tree (*
The syntax above is “OCaml” style. It’s common to see
unions defined using the ".NET” style as follows which
surrounds the type parameter with <'s and >'s after
the type name: type tree<'a> = | Leaf of 'a | Node of
tree<'a> * tree<'a> *)

We can use the union define above to define a binary tree
of any data type:
open System type 'a tree = | Leaf of 'a | Node of 'a tree
* 'a tree let firstTree = Node(Leaf 1, Node(Leaf 2,
Node(Node(Leaf 4, Leaf 5), Leaf 3))) let secondTree
= Node(Node(Node(Leaf “Red”, Leaf “Orange”),
Node(Leaf “Yellow”, Leaf “Green”)), Node(Leaf
“Blue”, Leaf “Violet”)) let prettyPrint tree = let rec
loop depth tree = let spacer = new String(' ', depth)
match tree with | Leaf(value) -> printfn "%s |- %A”
spacer value | Node(tree1, tree2) -> printfn "%s |"
spacer loop (depth + 1) tree1 loop (depth + 1) tree2
loop 0 tree let main() = printfn “firstTree:" prettyPrint
firstTree printfn “secondTree:" prettyPrint secondTree
Console.ReadKey(true) |> ignore main()

The functions above have the following types:
type 'a tree = | Leaf of 'a | Node of 'a tree * 'a tree
val firstTree : int tree val secondTree : string tree val
prettyPrint : 'a tree -> unit

This program outputs:
firstTree: | |- 1 | |- 2 | | |- 4 |- 5 |- 3 secondTree: | | | |- “Red”
|- “Orange” | |- “Yellow” |- “Green” | |- “Blue” |- “Violet”

3.6.6 Examples

Built-in Union Types

F# has several built-in types derived from discriminated
unions, some of which have already been introduced in
this tutorial. These types include:
type 'a list = | Cons of 'a * 'a list | Nil type 'a option = |
Some of 'a | None

36 CHAPTER 3. IMMUTABLE DATA STRUCTURES

Propositional Logic

The ML family of languages, which includes F# and its
parent language OCaml, were originally designed for the
development of automated theorem provers. Union types
allow F# programmers to represent propositional logic re-
markably concisely. To keep things simple, lets limit our
propositions to four possible cases:
type proposition = | True | Not of proposition | And
of proposition * proposition | Or of proposition *
proposition

Let’s say we had a series of propositions and wanted to
determine whether they evaluate to true or false. We can
easily write an eval function by recursively enumerating
through a propositional statement as follows:
let rec eval = function | True -> true | Not(prop) ->
not (eval(prop)) | And(prop1, prop2) -> eval(prop1)
&& eval(prop2) | Or(prop1, prop2) -> eval(prop1) ||
eval(prop2)

The eval function has the type val eval : proposition ->
bool.
Here is a full program using the eval function:
open System type proposition = | True | Not of proposi-
tion | And of proposition * proposition | Or of proposition
* proposition let prop1 = (* ~t || ~~t *) Or(Not True,
Not (Not True)) let prop2 = (* ~(t && ~t) || ((t || t)
|| ~t) *) Or(Not(And(True, Not True)), Or(Or(
True, True), Not True)) let prop3 = (* ~~~~~~~t *)
Not(Not(Not(Not(Not(Not(Not True)))))) let rec eval =
function | True -> true | Not(prop) -> not (eval(prop))
| And(prop1, prop2) -> eval(prop1) && eval(prop2) |
Or(prop1, prop2) -> eval(prop1) || eval(prop2) let main()
= let testProp name prop = printfn "%s: %b” name
(eval prop) testProp “prop1” prop1 testProp “prop2”
prop2 testProp “prop3” prop3 Console.ReadKey(true) |>
ignore main()

This program outputs the following:
prop1: true prop2: true prop3: false

3.6.7 Additional Reading

Theorem Proving Examples (OCaml)

http://www.cl.cam.ac.uk/~jrh13/atp/index.html

Chapter 4

Imperative Programming

4.1 Mutable Data

All of the data types and values in F# seen so far have
been immutable, meaning the values cannot be reassigned
another value after they've been declared. However, F#
allows programmers to create variables in the true sense
of the word: variables whose values can change through-
out the lifetime of the application.

4.1.1 mutable Keyword

The simplest mutable variables in F# are declared using
the mutable keyword. Here is a sample using fsi:
> let mutable x = 5;; val mutable x : int > x;; val it : int =
5 > x <- 10;; val it : unit = () > x;; val it : int = 10

As shown above, the <- operator is used to assign a muta-
ble variable a new value. Notice that variable assignment
actually returns unit as a value.
Themutable keyword is frequently used with record types
to create mutable records:
open System type transactionItem = { ID : int; mu-
table IsProcessed : bool; mutable ProcessedText :
string; } let getItem id = { ID = id; IsProcessed =
false; ProcessedText = null; } let processItems (items
: transactionItem list) = items |> List.iter(fun item ->
item.IsProcessed <- true item.ProcessedText <- sprintf
“Processed %s” (DateTime.Now.ToString("hh:mm:ss"))
Threading.Thread.Sleep(1000) (* Putting thread to sleep
for 1 second to simulate processing overhead. *))
let printItems (items : transactionItem list) = items |>
List.iter (fun x -> printfn "%A” x) let main() = let items
= List.init 5 getItem printfn “Before process:" printItems
items printfn “After process:" processItems items print-
Items items Console.ReadKey(true) |> ignore main()
Before process: {ID = 0; IsProcessed = false; Processed-
Text = null;} {ID = 1; IsProcessed = false; Processed-
Text = null;} {ID = 2; IsProcessed = false; Processed-
Text = null;} {ID = 3; IsProcessed = false; Processed-
Text = null;} {ID = 4; IsProcessed = false; Processed-
Text = null;} After process: {ID = 0; IsProcessed = true;
ProcessedText = “Processed 10:00:31";} {ID = 1; IsPro-

cessed = true; ProcessedText = “Processed 10:00:32";}
{ID = 2; IsProcessed = true; ProcessedText = “Processed
10:00:33";} {ID = 3; IsProcessed = true; ProcessedText
= “Processed 10:00:34";} {ID = 4; IsProcessed = true;
ProcessedText = “Processed 10:00:35";}

Limitations of Mutable Variables

Mutable variables are somewhat limited: with early ver-
sion of F#, mutables are inaccessible outside of the scope
of the function where they are defined. Specifically, this
means its not possible to reference a mutable in a sub-
function of another function. Here’s a demonstration in
fsi:
> let testMutable() = let mutable msg = “hello” printfn
"%s” msg let setMsg() = msg <- “world” setMsg() printfn
"%s” msg;; msg <- “world” --------^^^^^^^^^^^^^^^
stdin(18,9): error FS0191: The mutable variable 'msg'
is used in an invalid way. Mutable variables may not be
captured by closures. Consider eliminating this use of
mutation or using a heap-allocated mutable reference
cell via 'ref' and '!'.

4.1.2 Ref cells

Ref cells get around some of the limitations of mutables.
In fact, ref cells are very simple datatypes which wrap up
a mutable field in a record type. Ref cells are defined by
F# as follows:
type 'a ref = { mutable contents : 'a }

The F# library contains several built-in functions and op-
erators for working with ref cells:
let ref v = { contents = v } (* val ref : 'a -> 'a ref *) let
(!) r = r.contents (* val (!) : 'a ref -> 'a *) let (:=) r v =
r.contents <- v (* val (:=) : 'a ref -> 'a -> unit *)

The ref function is used to create a ref cell, the ! oper-
ator is used to read the contents of a ref cell, and the :=
operator is used to assign a ref cell a new value. Here is

37

38 CHAPTER 4. IMPERATIVE PROGRAMMING

a sample in fsi:
> let x = ref “hello";; val x : string ref > x;; (* returns ref
instance *) val it : string ref = {contents = “hello";} >
!x;; (* returns x.contents *) val it : string = “hello” > x :=
“world";; (* updates x.contents with a new value *) val it
: unit = () > !x;; (* returns x.contents *) val it : string =
“world”

Since ref cells are allocated on the heap, they can be
shared across multiple functions:
open System let withSideEffects x = x := “assigned from
withSideEffects function” let refTest() = let msg = ref
“hello” printfn "%s” !msg let setMsg() = msg := “world”
setMsg() printfn "%s” !msg withSideEffects msg printfn
"%s” !msg let main() = refTest() Console.ReadKey(true)
|> ignore main()

The withSideEffects function has the type val withSide-
Effects : string ref -> unit.
This program outputs the following:
hello world assigned from withSideEffects function
The withSideEffects function is named as such because
it has a side-effect, meaning it can change the state of a
variable in other functions. Ref Cells should be treated
like fire. Use it cautiously when it is absolutely necessary
but avoid it in general. If you find yourself using Ref Cells
while translating code fromC/C++, then ignore efficiency
for a while and see if you can get away without Ref Cells
or at worst using mutable. You would often stumble upon
a more elegant and more maintanable algorithm

Aliasing Ref Cells

Note: While imperative programming uses
aliasing extensively, this practice has a number
of problems. In particular it makes programs
hard to follow since the state of any variable
can be modified at any point elsewhere in an
application. Additionally, multithreaded ap-
plications sharing mutable state are difficult to
reason about since one thread can potentially
change the state of a variable in another thread,
which can result in a number of subtle errors
related to race conditions and dead locks.

A ref cell is very similar to a C or C++ pointer. Its possi-
ble to point to two or more ref cells to the same memory
address; changes at that memory address will change the
state of all ref cells pointing to it. Conceptually, this pro-
cess looks like this:
Let’s say we have 3 ref cells looking at the same address
in memory:
cell1, cell2, and cell3 are all pointing to the same address
in memory. The .contents property of each cell is 7. Let’s

say, at some point in our program, we execute the code
cell1 := 10, this changes the value in memory to the fol-
lowing:
By assigning cell1.contents a new value, the variables
cell2 and cell3 were changed as well. This can be demon-
strated using fsi as follows:
> let cell1 = ref 7;; val cell1 : int ref > let cell2 = cell1;;
val cell2 : int ref > let cell3 = cell2;; val cell3 : int ref >
!cell1;; val it : int = 7 > !cell2;; val it : int = 7 > !cell3;; val
it : int = 7 > cell1 := 10;; val it : unit = () > !cell1;; val it :
int = 10 > !cell2;; val it : int = 10 > !cell3;; val it : int = 10

4.1.3 Encapsulating Mutable State

F# discourages the practice of passing mutable data be-
tween functions. Functions that rely on mutation should
generally hide its implementation details behind a private
function, such as the following example in FSI:
> let incr = let counter = ref 0 fun () -> counter :=
!counter + 1 !counter;; val incr : (unit -> int) > incr();;
val it : int = 1 > incr();; val it : int = 2 > incr();; val it :
int = 3

4.2 Control Flow

In all programming languages, control flow refers to the
decisions made in code that affect the order in which
statements are executed in an application. F#'s imper-
ative control flow elements are similar to those encoun-
tered in other languages.

4.2.1 Imperative Programming in a Nut-
shell

Most programmers coming from a C#, Java, or C++
background are familiar with an imperative style of pro-
gramming which uses loops, mutable data, and functions
with side-effects in applications. While F# primarily en-
courages the use of a functional programming style, it has
constructs which allow programmers to write code in a
more imperative style as well. Imperative programming
can be useful in the following situations:

• Interacting with many objects in the .NET Frame-
work, most of which are inherently imperative.

• Interacting with components that depend heavily on
side-effects, such as GUIs, I/O, and sockets.

• Scripting and prototyping snippets of code.

• Initializing complex data structures.

4.2. CONTROL FLOW 39

• Optimizing blocks of code where an imperative ver-
sion of an algorithm is more efficient than the func-
tional version.

4.2.2 if/then Decisions

F#'s if/then/elif/else construct has already been seen ear-
lier in this book, but to introduce it more formally, the
if/then construct has the following syntaxes:
(* simple if *) if expr then expr (* binary if *) if expr
then expr else expr (* multiple else branches *) if expr
then expr elif expr then expr elif expr then expr ... else
expr

Like all F# blocks, the scope of an if statement extends
to any code indented under it. For example:
open System let printMessage condition = if condition
then printfn “condition = true: inside the 'if'" printfn “out-
side the 'if' block” let main() = printMessage true printfn
"--------" printMessage false Console.ReadKey(true) |>
ignore main()

This program prints:
condition = true: inside the 'if' outside the 'if' block -----
--- outside the 'if' block

Working With Conditions

F# has three boolean operators:
The && and || operators are short-circuited, meaning the
CLR will perform the minimum evaluation necessary to
determine whether the condition will succeed or fail. For
example, if the left side of an && evaluates to false, then
there is no need to evaluate the right side; likewise, if the
left side of a || evaluates to true, then there is no need to
evaluate the right side of the expression.
Here is a demonstration of short-circuiting in F#:
open System let alwaysTrue() = printfn “Always true”
true let alwaysFalse() = printfn “Always false” false
let main() = let testCases = ["alwaysTrue && al-
waysFalse”, fun() -> alwaysTrue() && alwaysFalse();
“alwaysFalse && alwaysTrue”, fun() -> alwaysFalse()
&& alwaysTrue(); “alwaysTrue || alwaysFalse”, fun()
-> alwaysTrue() || alwaysFalse(); “alwaysFalse || al-
waysTrue”, fun() -> alwaysFalse() || alwaysTrue();]
testCases |> List.iter (fun (msg, res) -> printfn "%s: %b”
msg (res()) printfn "-------") Console.ReadKey(true) |>
ignore main()

The alwaysTrue and alwaysFalse methods return true and
false respectively, but they also have a side-effect of print-
ing a message to the console whenever the functions are
evaluated.

This program outputs the following:
Always true Always false alwaysTrue && alwaysFalse:
false ------- Always false alwaysFalse && alwaysTrue:
false ------- Always true alwaysTrue || alwaysFalse: true --
----- Always false Always true alwaysFalse || alwaysTrue:
true -------
As you can see above, the expression alwaysTrue &&
alwaysFalse evaluates both sides of the expression. al-
waysFalse && alwaysTrue only evaluates the left side of
the expression; since the left side returns false, its unnec-
essary to evaluate the right side.

4.2.3 for Loops Over Ranges

for loops are traditionally used to iterate over a well-
defined integer range. The syntax of a for loop is defined
as:
for var = start-expr to end-expr do ... // loop body

Here’s a trivial program which prints out the numbers 1 -
10:
let main() = for i = 1 to 10 do printfn “i: %i” i main()

This program outputs:
i: 1 i: 2 i: 3 i: 4 i: 5 i: 6 i: 7 i: 8 i: 9 i: 10
This code takes input from the user to compute an aver-
age:
open System let main() = Console.WriteLine(“This
program averages numbers input by the user.”) Con-
sole.Write(“How many numbers do you want to add?
") let mutable sum = 0 let numbersToAdd = Con-
sole.ReadLine() |> int for i = 1 to numbersToAdd
do Console.Write(“Input #{0}: ", i) let input = Con-
sole.ReadLine() |> int sum <- sum + input let average
= sum / numbersToAdd Console.WriteLine(“Average:
{0}", average) main()

This program outputs:
This program averages numbers input by the user. How
many numbers do you want to add? 3 Input #1: 100 Input
#2: 90 Input #3: 50 Average: 80

4.2.4 for Loops Over Collections and Se-
quences

Its often convenient to iterate over collections of items
using the syntax:
for pattern in expr do ... // loop body

For example, we can print out a shopping list in fsi:
> let shoppingList = ["Tofu”, 2, 1.99; “Seitan”, 2,

40 CHAPTER 4. IMPERATIVE PROGRAMMING

3.99; “Tempeh”, 3, 2.69; “Rice milk”, 1, 2.95;];; val
shoppingList : (string * int * float) list > for (food,
quantity, price) in shoppingList do printfn “food: %s,
quantity: %i, price: %g” food quantity price;; food:
Tofu, quantity: 2, price: 1.99 food: Seitan, quantity: 2,
price: 3.99 food: Tempeh, quantity: 3, price: 2.69 food:
Rice milk, quantity: 1, price: 2.95

4.2.5 while Loops

As the name suggests, while loops will repeat a block of
code indefinitely while a particular condition is true. The
syntax of a while loop is defined as follows:
while expr do ... // loop body

We use a while loop when we don't know howmany times
to execute a block of code. For example, lets say we
wanted the user to guess a password to a secret area; the
user could get the password right on the first try, or the
user could try millions of passwords, we just don't know.
Here is a short program that requires a user to guess a
password correctly in at most 3 attempts:
open System let main() = let password = “monkey”
let mutable guess = String.Empty let mutable attempts
= 0 while password <> guess && attempts < 3 do
Console.Write(“What’s the password? ") attempts <-
attempts + 1 guess <- Console.ReadLine() if password
= guess then Console.WriteLine(“You got the password
right!") else Console.WriteLine(“You didn't guess the
password”) Console.ReadKey(true) |> ignore main()

This program outputs the following:
What’s the password? kitty What’s the password? mon-
key You got the password right!

4.3 Arrays

Arrays are a ubiquitous, familiar data structure used to
represent a group of related, ordered values. Unlike F#
data structures, arrays are mutable, meaning the values in
an array can be changed after the array has been created.

4.3.1 Creating Arrays

Arrays are conceptually similar to lists. Naturally, arrays
can be created using many of the same techniques as lists:

Array literals

> [| 1; 2; 3; 4; 5 |];; val it : int array = [|1; 2; 3; 4; 5|]

Array comprehensions

F# supports array comprehensions using ranges and gen-
erators in the same style and format as list comprehen-
sions:
> [| 1 .. 10 |];; val it : int array = [|1; 2; 3; 4; 5; 6; 7; 8; 9;
10|] > [| 1 .. 3 .. 10 |];; val it : int array = [|1; 4; 7; 10|] >
[| for a in 1 .. 5 do yield (a, a*a, a*a*a) |];; val it : (int *
int * int) array = [|(1, 1, 1); (2, 4, 8); (3, 9, 27); (4, 16,
64); (5, 25, 125)|]

System.Array Methods

There are several methods in the System.Array module
for creating arrays:
val zeroCreate : int arraySize -> 'T []

Creates an array with arraySize elements. Each
element in the array holds the default value for
the particular data type (0 for numbers, false
for bools, null for reference types).

> let (x : int array) = Array.zeroCreate 5;; val x : int
array > x;; val it : int array = [|0; 0; 0; 0; 0|]

val create : int -> 'T value -> 'T []

Creates an array with arraySize elements. Ini-
tializes each element in the array with value.

> Array.create 5 “Juliet";; val it : string [] = [|"Juliet";
“Juliet"; “Juliet"; “Juliet"; “Juliet"|]

val init : int arraySize -> (int index -> 'T) initializer
-> 'T []

Creates an array with arraySize elements. Ini-
tializes each element in the array with the ini-
tializer function.

> Array.init 5 (fun index -> sprintf “index: %i” index);;
val it : string [] = [|"index: 0"; “index: 1"; “index: 2";
“index: 3"; “index: 4"|]

4.3.2 Working With Arrays

Elements in an array are accessed by their index, or posi-
tion in an array. Array indexes always start at 0 and end
at array.length - 1. For example, lets take the following
array:
let names = [| “Juliet"; “Monique"; “Rachelle"; “Tara";
“Sophia” |] (* Indexes: 0 1 2 3 4 *)

https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists#Using_List_Comprehensions
https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists#Using_List_Comprehensions

4.3. ARRAYS 41

This list contains 5 items. The first index is 0, and the last
index is 4.
We can access items in the array using the .[index] oper-
ator, also called indexer notation. Here is the same array
in fsi:
> let names = [| “Juliet"; “Monique"; “Rachelle"; “Tara";
“Sophia” |];; val names : string array > names.[2];; val it
: string = “Rachelle” > names.[0];; val it : string = “Juliet”

Instances of arrays have a Length property which returns
the number of elements in the array:
> names.Length;; val it : int = 5 > for i = 0 to
names.Length - 1 do printfn "%s” (names.[i]);; Juliet
Monique Rachelle Tara Sophia

Arrays are mutable data structures, meaning we can as-
sign elements in an array new values at any point in our
program:
> names;; val it : string array = [|"Juliet"; “Monique";
“Rachelle"; “Tara"; “Sophia"|] > names.[4] <- “Kristen";;
val it : unit = () > names;; val it : string array = [|"Juliet";
“Monique"; “Rachelle"; “Tara"; “Kristen"|]

If you try to access an element outside the range of an
array, you'll get an exception:
> names.[−1];; System.IndexOutOfRangeException:
Index was outside the bounds of the array. at <Startup-
Code$FSI_0029>.$FSI_0029._main() stopped due to
error > names.[5];; System.IndexOutOfRangeException:
Index was outside the bounds of the array. at <Startup-
Code$FSI_0030>.$FSI_0030._main() stopped due to
error

Array Slicing

F# supports a few useful operators which allow program-
mers to return “slices” or subarrays of an array using the
.[start..finish] operator, where one of the start and finish
arguments may be omitted.
> let names = [|"0: Juliet"; “1: Monique"; “2: Rachelle";
“3: Tara"; “4: Sophia"|];; val names : string array >
names.[1..3];; (* Grabs items between index 1 and 3 *)
val it : string [] = [|"1: Monique"; “2: Rachelle"; “3:
Tara"|] > names.[2..];; (* Grabs items between index 2
and last element *) val it : string [] = [|"2: Rachelle";
“3: Tara"; “4: Sophia"|] > names.[..3];; (* Grabs items
between first element and index 3 *) val it : string [] =
[|"0: Juliet"; “1: Monique"; “2: Rachelle"; “3: Tara"|]

Note that array slices generate a new array, rather than
altering the existing array. This requires allocating new
memory and copying elements from our source array into

our target array. If performance is a high priority, it is
generally more efficient to look at parts of an array using
a few index adjustments.

Multi-dimensional Arrays

A multi-dimensional array is literally an array of ar-
rays. Conceptually, it’s not any harder to work with these
types of arrays than single-dimensional arrays (as shown
above). Multi-dimensional arrays come in two forms:
rectangular and jagged arrays.

Rectangular Arrays A rectangular array, which may
be called a grid or a matrix, is an array of arrays, where
all of the inner arrays have the same length. Here is a
simple 2x3 rectangular array in fsi:
> Array2D.zeroCreate<int> 2 3;; val it : int [,] = [|[|0; 0;
0|]; [|0; 0; 0|]|]

This array has 2 rows, and each row has 3 columns. To
access elements in this array, you use the .[row,col] op-
erator:
> let grid = Array2D.init<string> 3 3 (fun row col ->
sprintf “row: %i, col: %i” row col);; val grid : string [,]
> grid;; val it : string [,] = [|[|"row: 0, col: 0"; “row: 0,
col: 1"; “row: 0, col: 2"|]; [|"row: 1, col: 0"; “row: 1, col:
1"; “row: 1, col: 2"|]; [|"row: 2, col: 0"; “row: 2, col: 1";
“row: 2, col: 2"|]|] > grid.[0, 1];; val it : string = “row: 0,
col: 1” > grid.[1, 2];; val it : string = “row: 1, col: 2”

Here’s a simple program to demonstrate how to use and
iterate through multidimensional arrays:
open System let printGrid grid = let maxY = (Ar-
ray2D.length1 grid) - 1 let maxX = (Array2D.length2
grid) - 1 for row in 0 .. maxY do for col in 0 .. maxX
do if grid.[row, col] = true then Console.Write("*
") else Console.Write("_ ") Console.WriteLine() let
toggleGrid (grid : bool[,]) = Console.WriteLine()
Console.WriteLine(“Toggle grid:") let row = Con-
sole.Write(“Row: ") Console.ReadLine() |> int let col
= Console.Write(“Col: ") Console.ReadLine() |> int
grid.[row, col] <- (not grid.[row, col]) let main() =
Console.WriteLine(“Create a grid:") let rows = Con-
sole.Write(“Rows: ") Console.ReadLine() |> int let
cols = Console.Write(“Cols: ") Console.ReadLine()
|> int let grid = Array2D.zeroCreate<bool> rows
cols printGrid grid let mutable go = true while go do
toggleGrid grid printGrid grid Console.Write(“Keep
playing (y/n)? ") go <- Console.ReadLine() = “y”
Console.WriteLine(“Thanks for playing”) main()

This program outputs the following:
Create a grid: Rows: 2 Cols: 3 _ _ _ _ _ _ Toggle grid:
Row: 0 Col: 1 _ * _ _ _ _ Keep playing (y/n)? y Toggle

42 CHAPTER 4. IMPERATIVE PROGRAMMING

grid: Row: 1 Col: 1 _ * _ _ * _ Keep playing (y/n)? y
Toggle grid: Row: 1 Col: 2 _ * _ _ * * Keep playing
(y/n)? n Thanks for playing
In additional to the Array2D module, F# has an Array3D
module to support 3-dimensional arrays as well.

Note It’s possible to create arrays with
more than 3 dimensions using the Sys-
tem.Array.CreateInstancemethod, but it’s gen-
erally recommended to avoid creating arrays
with huge numbers of elements or dimensions,
since it can quickly consume all of the avail-
able memory on a machine. For comparison,
an int is 4 bytes, and a 1000x1000x1000 int
array would consume about 3.7 GB of mem-
ory, more than the memory available on 99%
of desktop PCs.

Jagged arrays A jagged array is an array of arrays,
except each row in the array does not necessary need to
have the same number of elements:
> [| for a in 1 .. 5 do yield [| 1 .. a |] |];; val it : int array
array = [|[|1|]; [|1; 2|]; [|1; 2; 3|]; [|1; 2; 3; 4|]; [|1; 2; 3; 4;
5|]|]

You use the .[index] operator to access items in the array.
Since each element contains another array, it’s common
to see code that resembles .[row].[col]:
> let jagged = [| for a in 1 .. 5 do yield [| 1 .. a |] |] for arr
in jagged do for col in arr do printf "%i " col printfn "";;
val jagged : int array array 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5
> jagged.[2].[2];; val it : int = 3 > jagged.[4].[0];; val it :
int = 1

Note: Notice that the data type of a rectangu-
lar array is 'a[,], but the data type of a jagged
array is 'a array array. This results because
a rectangular array stores data “flat”, whereas
a jagged array is literally an array of point-
ers to arrays. Since these two types of ar-
rays are stored differently in memory, F# treats
'a[,] and 'a array array as two different, non-
interchangeable data types. As a result, rectan-
gular and jagged arrays have slightly different
syntax for element access.

Rectangular arrays are stored in a slightly more
efficient manner and generally perform better
than jagged arrays, although there may not be
a perceptible difference in most applications.
However, it’s worth noting performance differ-
ences between the two in benchmark tests.

Using the Array Module

There are two array modules, System.Array and
Microsoft.FSharp.Collections.Array, developed by the
.NET BCL designers and the creators of F# respectively.
Many of the methods and functions in the F# Array mod-
ule are similar to those in the List module.
val append : 'T[] first -> 'T[] second -> 'T[]

Returns a new array with elements consisting
of the first array followed by the second array.

val choose : ('T item -> 'U option) -> 'T[] input ->
'U[]

Filters and maps an array, returning a new ar-
ray consisting of all elements which returned
Some.

val copy : 'T[] input -> 'T[]

Returns a copy of the input array.

val fill : 'T[] input -> int start -> int end -> 'T value
-> unit

Assigns value to all the elements between the
start and end indexes.

val filter : ('T -> bool) -> 'T[] -> 'T[]

Returns a new array consisting of items filtered
out of the input array.

val fold : ('State -> 'T -> 'State) -> 'State -> 'T[] input
-> 'State

Accumulates left to right over an array.

val foldBack : ('T -> 'State -> 'State) -> 'T[] input ->
'State -> 'State

Accumulates right to left over an array.

val iter : ('T -> unit) -> 'T[] input -> unit

Applies a function to all of the elements of the
input array.

val length : 'T[] -> int

Returns the number of items in an array.

val map : ('T -> 'U) -> 'T[] -> 'U[]

http://msdn.microsoft.com/en-us/magazine/cc163995.aspx#S10

4.3. ARRAYS 43

Applies a mapping function to each element in
the input array to return a new array.

val rev : 'T[] input -> 'T[]

Returns a new array with the items in reverse
order.

val sort : 'T[] -> 'T[]

Sorts a copy of an array.

val sortInPlace : 'T[] -> unit

Sorts an array in place. Note that the sortIn-
Place method returns unit, indicating the sort-
InPlace mutates the original array.

val sortBy : ('T -> 'T -> int) -> 'T[] -> 'T[]

Sorts a copy of an array based on the sorting
function.

val sub : 'T[] -> int start -> int end -> 'T[]

Returns a sub array based on the given start and
end indexes.

4.3.3 Differences Between Arrays and
Lists

• Lists

• Immutable, allows new lists to share nodes
with other lists.

• List literals.

• Pattern matching.

• Supports mapping and folding.

• Linear lookup time.

• No random access to elements, just
“forward-only” traversal.

• Arrays

• Array literals.

• Constant lookup time.

• Good spacial locality of reference ensures
efficient lookup time.

• Indexes indicate the position of each ele-
ment relative to others, making arrays ideal for
random access.

• Supports mapping and folding.

• Mutability prevents arrays from sharing
nodes with other elements in an array.

• Not resizable.

Representation in Memory

Items in an array are represented in memory as adjacent
values in memory. For example, lets say we create the
following int array:

[| 15; 5; 21; 0; 9 |]

Represented in memory, our array resembles something
like this:
Memory Location: | 100 | 104 | 108 | 112 | 116 Value: |
15 | 5 | 21 | 0 | 9 Index: | 0 | 1 | 2 | 3 | 4
Each int occupies 4 bytes of memory. Since our array
contains 5 elements, the operating systems allocates 20
bytes of memory to hold this array (4 bytes * 5 elements
= 20 bytes). The first first element in the array occupies
memory 100-103, the second element occupies 104-107,
and so on.
We know that each element in the array is identified by
it’s index or position in the array. Literally, the index is
an offset: since the array starts at memory location 100,
and each element in the array occupies a fixed amount of
memory, the operating system can know the exact address
of each element in memory using the formula:

Start memory address of element at index n
= StartPosition of array + (n * length of data
type)
End memory address of element at index n =
Start memory address + length of data type

In laymens terms, this means we can access the nth ele-
ment of any array in constant time, or in O(1) operations.
This is in contrast to lists, where accessing the nth element
requires O(n) operations.
With the understanding that elements in an array occupy
adjacent memory locations, we can deduce two properties
of arrays:

1. Creating arrays requires programmers to specify the
size of the array upfront, otherwise the operating
system won't know how many adjacent memory lo-
cations to allocate.

2. Arrays are not resizable, because memory locations
before the first element or beyond the last element
may hold data used by other applications. An ar-
ray is only “resized” by allocating a new block of
memory and copying all of the elements from the
old array into the new array.

44 CHAPTER 4. IMPERATIVE PROGRAMMING

4.4 Mutable Collections

The .NET BCL comes with its own suite of
mutable collections which are found in the
System.Collections.Generic namespace. These built-
in collections are very similar to their immutable
counterparts in F#.

4.4.1 List<'T> Class

The List<'T> class represents a strongly typed list of ob-
jects that can be accessed by index. Conceptually, this
makes the List<'T> class similar to arrays. However, un-
like arrays, Lists can be resized and don't need to have
their size specified on declaration.
.NET lists are created using the new keyword and calling
the list’s constructor as follows:
> open System.Collections.Generic;; > let myList
= new List<string>();; val myList : List<string>
> myList.Add(“hello”);; val it : unit = () >
myList.Add(“world”);; val it : unit = () > myList.[0];; val
it : string = “hello” > myList |> Seq.iteri (fun index item
-> printfn "%i: %s” index myList.[index]);; 0: hello 1:
world

It’s easy to tell that .NET lists are mutable because their
Add methods return unit rather than returning another
list.

Underlying Implementation

Behind the scenes, the List<'T> class is just a fancy wrap-
per for an array. When a List<'T> is constructed, it cre-
ates an 4-element array in memory. Adding the first 4
items is an O(1) operation. However, as soon as the 5th
element needs to be added, the list doubles the size of the
internal array, which means it has to reallocate newmem-
ory and copy elements in the existing list; this is a O(n)
operation, where n is the number of items in the list.
The List<'T>.Count property returns the number of items
currently held in the collection, the List<'T>.Capacity
collection returns the size of the underlying array. This
code sample demonstrates how the underlying array is re-
sized:
open System open System.Collections.Generic let items
= new List<string>() let printList (l : List<_>) =
printfn “l.Count: %i, l.Capacity: %i” l.Count l.Capacity
printfn “Items:" l |> Seq.iteri (fun index item -> printfn
" l.[%i]: %s” index l.[index]) printfn "-----------" let
main() = printList items items.Add(“monkey”) print-
List items items.Add(“kitty”) items.Add(“bunny”) print-
List items items.Add(“doggy”) items.Add(“octopussy”)
items.Add(“ducky”) printList items printfn “Removing
entry for \"doggy\"\n--------\n” items.Remove(“doggy”)

|> ignore printList items printfn “Removing item at index
3\n--------\n” items.RemoveAt(3) printList items Con-
sole.ReadKey(true) |> ignore main()
l.Count: 0, l.Capacity: 0 Items: ----------- l.Count: 1,
l.Capacity: 4 Items: l.[0]: monkey ----------- l.Count:
3, l.Capacity: 4 Items: l.[0]: monkey l.[1]: kitty l.[2]:
bunny ----------- l.Count: 6, l.Capacity: 8 Items: l.[0]:
monkey l.[1]: kitty l.[2]: bunny l.[3]: doggy l.[4]: octo-
pussy l.[5]: ducky ----------- Removing entry for “doggy”
-------- l.Count: 5, l.Capacity: 8 Items: l.[0]: monkey
l.[1]: kitty l.[2]: bunny l.[3]: octopussy l.[4]: ducky -
---------- Removing item at index 3 -------- l.Count: 4,
l.Capacity: 8 Items: l.[0]: monkey l.[1]: kitty l.[2]:
bunny l.[3]: ducky -----------
If you know the maximum size of the list beforehand,
it is possible to avoid the performance hit by calling the
List<'T>(size : int) constructor instead. The following
sample demonstrates how to add 1000 items to a list with-
out resizing the internal array:
> let myList = new List<int>(1000);; val myList :
List<int> > myList.Count, myList.Capacity;; val it : int
* int = (0, 1000) > seq { 1 .. 1000 } |> Seq.iter (fun x
-> myList.Add(x));; val it : unit = () > myList.Count,
myList.Capacity;; val it : int * int = (1000, 1000)

4.4.2 LinkedList<'T> Class

A LinkedList<'T> represented a doubly-linked sequence
of nodes which allows efficient O(1) inserts and removal,
supports forward and backward traversal, but its imple-
mentation prevents efficient random access. Linked lists
have a few valuable methods:
(* Prepends an item to the LinkedList *) val AddFirst
: 'T -> LinkedListNode<'T> (* Appends an items to
the LinkedList *) val AddLast : 'T -> LinkedListN-
ode<'T> (* Adds an item before a LinkedListNode *) val
AddBefore : LinkedListNode<'T> -> 'T -> LinkedListN-
ode<'T> (* Adds an item after a LinkedListNode *) val
AddAfter : LinkedListNode<'T> -> 'T -> LinkedListN-
ode<'T>

Note that these methods return a LinkedListNode<'T>,
not a new LinkedList<'T>. Adding nodes actually mu-
tates the LinkedList object:
> open System.Collections.Generic;; > let
items = new LinkedList<string>();; val items :
LinkedList<string> > items.AddLast(“AddLast1”);;
val it : LinkedListNode<string> = Sys-
tem.Collections.Generic.LinkedListNode`1[System.String]
{List = seq ["AddLast1"]; Next = null; Previous = null;
Value = “AddLast1";} > items.AddLast(“AddLast2”);;
val it : LinkedListNode<string> = Sys-
tem.Collections.Generic.LinkedListNode`1[System.String]
{List = seq ["AddLast1"; “Add-

http://msdn.microsoft.com/en-us/library/system.collections.generic.aspx
http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx
https://en.wikibooks.org/wiki/F_Sharp_Programming/Arrays
http://msdn.microsoft.com/en-us/library/he2s3bh7.aspx

4.4. MUTABLE COLLECTIONS 45

Last2"]; Next = null; Previous = Sys-
tem.Collections.Generic.LinkedListNode`1[System.String];
Value = “AddLast2";} > let firstItem =
items.AddFirst(“AddFirst1”);; val firstItem
: LinkedListNode<string> > let addAfter =
items.AddAfter(firstItem, “addAfter”);; val addAfter
: LinkedListNode<string> > let addBefore =
items.AddBefore(addAfter, “addBefore”);; val ad-
dBefore : LinkedListNode<string> > items |> Seq.iter
(fun x -> printfn "%s” x);; AddFirst1 addBefore addAfter
AddLast1 AddLast2

The Stack<'T> and Queue<'T> classes are special cases
of a linked list (they can be thought of as linked lists with
restrictions on where you can add and remove items).

Stack<'T> Class

A Stack<'T> only allows programmers prepend/push and
remove/pop items from the front of a list, which makes it
a last in, first out (LIFO) data structure. The Stack<'T>
class can be thought of as a mutable version of the F# list.
> stack.Push(“First”);; (* Adds item to front of the list *)
val it : unit = () > stack.Push(“Second”);; val it : unit = ()
> stack.Push(“Third”);; val it : unit = () > stack.Pop();;
(* Returns and removes item from front of the list *)
val it : string = “Third” > stack.Pop();; val it : string =
“Second” > stack.Pop();; val it : string = “First”

A stack of coins could be represented with this data struc-
ture. If we stacked coins one on top another, the first coin
in the stack is at the bottom of the stack, and the last coin
in the stack appears at the top. We remove coins from top
to bottom, so the last coin added to the stack is the first
one removed.

PopPush

A simple representation of a stack

Queue<'T> Class

A Queue<'T> only allows programmers to ap-
pend/enqueue to the rear of a list and remove/dequeue

from the front of a list, which makes it a first in, first out
(FIFO) data structure.
> let queue = new Queue<string>();; val queue
: Queue<string> > queue.Enqueue(“First”);; (*
Adds item to the rear of the list *) val it : unit
= () > queue.Enqueue(“Second”);; val it : unit =
() > queue.Enqueue(“Third”);; val it : unit = () >
queue.Dequeue();; (* Returns and removes item
from front of the queue *) val it : string = “First”
> queue.Dequeue();; val it : string = “Second” >
queue.Dequeue();; val it : string = “Third”

A line of people might be represented by a queue: people
add themselves to the rear of the line, and are removed
from the front. The first person to stand in line is the first
person to be served.

4.4.3 HashSet<'T>, and Dictio-
nary<'TKey, 'TValue> Classes

The HashSet<'T> and Dictionary<'TKey, 'TValue>
classes are mutable analogs of the F# set and map data
structures and contain many of the same functions.
Using the HashSet<'T>
open System open System.Collections.Generic let
nums_1to10 = new HashSet<int>() let nums_5to15 =
new HashSet<int>() let main() = let printCollection
msg targetSet = printf "%s: " msg targetSet |> Seq.sort
|> Seq.iter(fun x -> printf "%O " x) printfn "" let
addNums min max (targetSet : ICollection<_>) = seq
{ min .. max } |> Seq.iter(fun x -> targetSet.Add(x))
addNums 1 10 nums_1to10 addNums 5 15 nums_5to15
printCollection “nums_1to10 (before)" nums_1to10
printCollection “nums_5to15 (before)" nums_5to15
nums_1to10.IntersectWith(nums_5to15) (* mutates
nums_1to10 *) printCollection “nums_1to10 (after)"
nums_1to10 printCollection “nums_5to15 (after)"
nums_5to15 Console.ReadKey(true) |> ignore main()
nums_1to10 (before): 1 2 3 4 5 6 7 8 9 10 nums_5to15
(before): 5 6 7 8 9 10 11 12 13 14 15 nums_1to10
(after): 5 6 7 8 9 10 nums_5to15 (after): 5 6 7 8 9 10 11
12 13 14 15
Using the Dictionary<'TKey, 'TValue>
> open System.Collections.Generic;; > let dict =
new Dictionary<string, string>();; val dict : Dictio-

http://msdn.microsoft.com/en-us/library/3278tedw.aspx
https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists
http://msdn.microsoft.com/en-us/library/7977ey2c.aspx
http://msdn.microsoft.com/en-us/library/bb359438.aspx
http://msdn.microsoft.com/en-us/library/xfhwa508.aspx
https://en.wikibooks.org/wiki/F_Sharp_Programming/Sets_and_Maps

46 CHAPTER 4. IMPERATIVE PROGRAMMING

nary<string,string> > dict.Add(“Garfield”, “Jim Davis”);;
val it : unit = () > dict.Add(“Farside”, “Gary Larson”);;
val it : unit = () > dict.Add(“Calvin and Hobbes”, “Bill
Watterson”);; val it : unit = () > dict.Add(“Peanuts”,
“Charles Schultz”);; val it : unit = () > dict.["Farside"];;
(* Use the '.[key]' operator to retrieve items *) val it :
string = “Gary Larson”

4.4.4 Differences Between .NET BCL and
F# Collections

The major difference between the collections built into
the .NETBCL and their F# analogs is, of course, mutabil-
ity. The mutable nature of BCL collections dramatically
affects their implementation and time-complexity:

* These classes are built on top of internal ar-
rays. They may take a performance hit as the
internal arrays are periodically resized when
adding items.

Note: the Big-O notation above refers to the
time-complexity of the insert/remove/retrieve
operations relative to the number of items in
the data structure, not the relative amount of
time required to evaluate the operations rela-
tive to other data structures. For example, ac-
cessing arrays by index vs. accessing dictio-
naries by key have the same time complexity,
O(1), but the operations do not necessarily oc-
cur in the same amount of time.

4.5 Basic I/O

Input and output, also called I/O, refers to any kind of
communication between two hardware devices or be-
tween the user and the computer. This includes printing
text out to the console, reading and writing files to disk,
sending data over a socket, sending data to the printer,
and a wide variety of other common tasks.
This page is not intended to provide an exhaustive look
at .NET’s I/O methods (readers seeking exhaustive refer-
ences are encouraged to review the excellent documenta-
tion on the System.IO namespace on MSDN). This page
will provide a cursory overview of some of the basic
methods available to F# programmers for printing and
working with files.

4.5.1 Working with the Console

With F#

By now, you're probably familiar with the printf, printfn,
sprintf and its variants in the Printf module. However,

just to describe thesemethodsmore formally, thesemeth-
ods are used for printf-style printing and formatting using
% markers as placeholders:
Print methods take a format string and a series of argu-
ments, for example:
> sprintf “Hi, I'm %s and I'm a %s” “Juliet” “Scorpio";;
val it : string = “Hi, I'm Juliet and I'm a Scorpio”

Methods in the Printf module are type-safe. For exam-
ple, attempting to use substitute an int placeholder with a
string results in a compilation error:
> sprintf “I'm %i years old” “kitty";; sprintf “I'm
%i years old” “kitty";; ---------------------------
^^^^^^^^ stdin(17,28): error FS0001: The type
'string' is not compatible with any of the types
byte,int16,int32,int64,sbyte,uint16,uint32,uint64,nativeint,unativeint,
arising from the use of a printf-style format string.

According to the F# documentation, % placeholders con-
sist of the following:

%[flags][width][.precision][type]

[flags] (optional)
Valid flags are:

0: add zeros instead of spaces to make up the
required width
'-': left justify the result within the width spec-
ified
'+': add a '+' character if the number is positive
(to match a '-' sign for negatives)
' ': add an extra space if the number is positive
(to match a '-' sign for negatives)

[width] (optional)
The optional width is an integer indicating the minimal
width of the result. For instance, %6d prints an integer,
prefixing it with spaces to fill at least 6 characters. If width
is '*', then an extra integer argument is taken to specify
the corresponding width.

any number
'*':

[.precision] (optional)
Represents the number of digits after a floating point
number.
> sprintf "%.2f” 12345.67890;; val it : string =
“12345.68” > sprintf "%.7f” 12345.67890;; val it : string
= “12345.6789000”

http://msdn.microsoft.com/en-us/library/system.io.aspx
http://msdn.microsoft.com/en-us/library/ee370560.aspx

4.5. BASIC I/O 47

[type] (required)
The following placeholder types are interpreted as fol-
lows:
%b: bool, formatted as “true” or “false” %s: string,
formatted as its unescaped contents %d, %i: any basic
integer type formatted as a decimal integer, signed if
the basic integer type is signed. %u: any basic integer
type formatted as an unsigned decimal integer %x, %X,
%o: any basic integer type formatted as an unsigned
hexadecimal (a-f)/Hexadecimal (A-F)/Octal integer %e,
%E, %f, %F, %g, %G: any basic floating point type
(float,float32) formatted using a C-style floating point
format specifications, i.e %e, %E: Signed value having
the form [-]d.dddde[sign]ddd where d is a single decimal
digit, dddd is one or more decimal digits, ddd is exactly
three decimal digits, and sign is + or - %f: Signed value
having the form [-]dddd.dddd, where dddd is one or more
decimal digits. The number of digits before the decimal
point depends on the magnitude of the number, and the
number of digits after the decimal point depends on the
requested precision. %g, %G: Signed value printed in
f or e format, whichever is more compact for the given
value and precision. %M: System.Decimal value %O:
Any value, printed by boxing the object and using it’s
ToString method(s) %A: Any value, printed by using Mi-
crosoft.FSharp.Text.StructuredFormat.Display.any_to_string
with the default layout settings %a: A general format
specifier, requires two arguments: (1) a function which
accepts two arguments: (a) a context parameter of
the appropriate type for the given formatting func-
tion (e.g. an #System.IO.TextWriter) (b) a value to
print and which either outputs or returns appropriate
text. (2) the particular value to print %t: A gen-
eral format specifier, requires one argument: (1) a
function which accepts a context parameter of the
appropriate type for the given formatting function
(e.g. an #System.IO.TextWriter)and which either out-
puts or returns appropriate text. Basic integer types are:
byte,sbyte,int16,uint16,int32,uint32,int64,uint64,nativeint,unativeint
Basic floating point types are: float, float32
Programmers can print to the console using the printf
method, however F# recommends reading console input
using the System.Console.ReadLine() method.

With .NET

.NET includes its own notation for format specifiers.

.NET format strings are untyped. Additionally, .NET’s
format strings are designed to be extensible, meaning that
a programmer can implement their own custom format
strings. Format placeholders have the following form:

{index[, length][:formatString]}

For example, using the String.Format method in fsi:

> System.String.Format(“Hi, my name is {0}
and I'm a {1}", “Juliet”, “Scorpio”);; val it :
string = “Hi, my name is Juliet and I'm a Scor-
pio” > System.String.Format("|{0,−50}|", “Left
justified”);; val it : string = "|Left justified |"
> System.String.Format("|{0,50}|", “Right jus-
tified”);; val it : string = "| Right justified|" >
System.String.Format("|{0:yyyy-MMM-dd}|", Sys-
tem.DateTime.Now);; val it : string = "|2009-Apr-06|"

See Number Format Strings, Date and Time Format
Strings, and Enum Format Strings for a comprehensive
reference on format specifiers for .NET.
Programmers can read and write to the console using the
System.Console class:
open System let main() = Console.Write(“What’s
your name? ") let name = Console.ReadLine() Con-
sole.Write(“Hello, {0}", name) main()

4.5.2 System.IO Namespace

The System.IO namespace contains a variety of useful
classes for performing basic I/O.

Files and Directories

The following classes are useful for interrogating the host
filesystem:

• The System.IO.File class exposes several useful
members for creating, appending, and deleting files.

• System.IO.Directory exposes methods for creating,
moving, and deleting directories.

• System.IO.Path performs operations on strings
which represent file paths.

• System.IO.FileSystemWatcher which allows users
to listen to a directory for changes.

Streams

A stream is a sequence of bytes. .NET provides some
classes which allow programmers to work with steams in-
cluding:

• System.IO.StreamReader which is used to read
characters from a stream.

• System.IO.StreamWriter which is used to write
characters to a stream.

• System.IO.MemoryStream which creates an in-
memory stream of bytes.

http://msdn.microsoft.com/en-us/library/26etazsy.aspx
http://msdn.microsoft.com/en-us/library/427bttx3.aspx
http://msdn.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn.microsoft.com/en-us/library/c3s1ez6e.aspx
http://msdn.microsoft.com/en-us/library/system.console.aspx
http://msdn.microsoft.com/en-us/library/system.io.aspx
http://msdn.microsoft.com/en-us/library/system.io.file.aspx
http://msdn.microsoft.com/en-us/library/system.io.directory.aspx
http://msdn.microsoft.com/en-us/library/system.io.path.aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.aspx
http://msdn.microsoft.com/en-us/library/system.io.streamreader.aspx
http://msdn.microsoft.com/en-us/library/system.io.streamwriter.aspx
http://msdn.microsoft.com/en-us/library/system.io.memorystream.aspx

48 CHAPTER 4. IMPERATIVE PROGRAMMING

4.6 Exception Handling

When a program encounters a problem or enters an in-
valid state, it will often respond by throwing an exception.
Left to its own devices, an uncaught exception will crash
an application. Programmers write exception handling
code to rescue an application from an invalid state.

4.6.1 Try/With

Let’s look at the following code:
let getNumber msg = printf msg;
int32(System.Console.ReadLine()) let x = getNum-
ber(“x = ") let y = getNumber(“y = ") printfn "%i + %i
= %i” x y (x + y)

This code is syntactically valid, and it has the correct
types. However, it can fail at run time if we give it a
bad input:
This program outputs the following:
x = 7 y = monkeys! ------------ FormatException was un-
handled. Input string was not in a correct format.
The string monkeys does not represent a number, so the
conversion fails with an exception. We can handle this
exception using F#'s try... with, a special kind of pattern
matching construct:
let getNumber msg = printf msg; try
int32(System.Console.ReadLine()) with | :? Sys-
tem.FormatException -> System.Int32.MinValue let x
= getNumber(“x = ") let y = getNumber(“y = ") printfn
"%i + %i = %i” x y (x + y)

This program outputs the following:
x = 7 y = monkeys! 7 + −2147483648 = −2147483641
It is, of course, wholly possible to catch multiple types of
exceptions in a single with block. For example, according
to the MSDN documentation, the System.Int32.Parse(s :
string) method will throw three types of exceptions:
ArgumentNullException

Occurs when s is a null reference.

FormatException

Occurs when s does not represent a numeric in-
put.

OverflowException

Occurs when s represents number greater
than or less than Int32.MaxValue or
Int32.MinValue (i.e. the number cannot
be represented with a 32-bit signed integer).

We can catch all of these exceptions by adding additional
match cases:
let getNumber msg = printf msg; try
int32(System.Console.ReadLine()) with | :?
System.FormatException -> −1 | :? Sys-
tem.OverflowException -> System.Int32.MinValue
| :? System.ArgumentNullException -> 0

Its not necessary to have an exhaustive list of match cases
on exception types, as the uncaught exception will simply
move to the next method in the stack trace.

4.6.2 Raising Exceptions

The code above demonstrates how to recover from an in-
valid state. However, when designing F# libraries, its of-
ten useful to throw exceptions to notify users that the pro-
gram encountered some kind of invalid input. There are
several standard functions for raising exceptions:
(* General failure *) val failwith : string -> 'a (* General
failure with formatted message *) val failwithf : String-
Format<'a, 'b> -> 'a (* Raise a specific exception *) val
raise : #exn -> 'a (* Bad input *) val invalidArg : string
-> 'a

For example:
type 'a tree = | Node of 'a * 'a tree * 'a tree | Empty let
rec add x = function | Empty -> Node(x, Empty, Empty)
| Node(y, left, right) -> if x > y then Node(y, left, add
x right) else if x < y then Node(y, add x left, right) else
failwithf “Item '%A' has already been added to tree” x

4.6.3 Try/Finally

Normally, an exception will cause a function to exit im-
mediately. However, a finally block will always execute,
even if the code throws an exception:
let tryWithFinallyExample f = try printfn “tryWithFi-
nallyExample: outer try block” try printfn “tryWith-
FinallyExample: inner try block” f() with | exn ->
printfn “tryWithFinallyExample: inner with block”
reraise() (* raises the same exception we just caught *)
finally printfn “tryWithFinally: outer finally block” let
catchAllExceptions f = try printfn "-------------" printfn
“catchAllExceptions: try block” tryWithFinallyExample
f with | exn -> printfn “catchAllExceptions: with block”
printfn “Exception message: %s” exn.Message let
main() = catchAllExceptions (fun () -> printfn “Function
executed successfully”) catchAllExceptions (fun () ->
failwith “Function executed with an error”) main()

This program will output the following:

http://msdn.microsoft.com/en-us/library/b3h1hf19.aspx
http://msdn.microsoft.com/en-us/library/system.argumentnullexception.aspx
http://msdn.microsoft.com/en-us/library/system.formatexception.aspx
http://msdn.microsoft.com/en-us/library/system.overflowexception.aspx

4.6. EXCEPTION HANDLING 49

------------- catchAllExceptions: try block tryWithFinal-
lyExample: outer try block tryWithFinallyExample: in-
ner try block Function executed successfully tryWithFi-
nally: outer finally block ------------- catchAllExceptions:
try block tryWithFinallyExample: outer try block try-
WithFinallyExample: inner try block tryWithFinallyEx-
ample: inner with block tryWithFinally: outer finally
block catchAllExceptions: with block Exception mes-
sage: Function executed with an error
Notice that our finally block executed in spite of the ex-
ception. Finally blocks are used most commonly to clean
up resources, such as closing an open file handle or closing
a database connection (even in the event of an exception,
we do not want to leave file handles or database connec-
tions open):
open System.Data.SqlClient let executeScalar con-
nectionString sql = let conn = new SqlConnec-
tion(connectionString) try conn.Open() (* this line
can throw an exception *) let comm = new SqlCom-
mand(sql, conn) comm.ExecuteScalar() (* this line can
throw an exception *) finally (* finally block guarantees
our SqlConnection is closed, even if our sql statement
fails *) conn.Close()

use Statement

Many objects in the .NET framework implement the
System.IDisposable interface, which means the objects
have a special method called Dispose to guarantee deter-
ministic cleanup of unmanaged resources. It’s considered
a best practice to call Dispose on these types of objects
as soon as they are no longer needed.
Traditionally, we'd use a try/finally block in this fashion:
let writeToFile fileName = let sw = new Sys-
tem.IO.StreamWriter(fileName : string) try
sw.Write(“Hello ") sw.Write(“World!") finally
sw.Dispose()

However, this can be occasionally bulky and cumber-
some, especially when dealing with many objects which
implement the IDisposable interface. F# provides the
keyword use as syntactic sugar for the pattern above. An
equivalent version of the code above can be written as
follows:
let writeToFile fileName = use sw = new Sys-
tem.IO.StreamWriter(fileName : string) sw.Write(“Hello
") sw.Write(“World!")

The scope of a use statement is identical to the scope of a
let statement. F# will automatically call Dispose() on an
object when the identifier goes out of scope.

4.6.4 Defining New Exceptions

F# allows us to easily define new types of exceptions using
the exception declaration. Here’s an example using fsi:
> exception ReindeerNotFoundException of string let
reindeer = ["Dasher"; “Dancer"; “Prancer"; “Vixen";
“Comet"; “Cupid"; “Donner"; “Blitzen"] let ge-
tReindeerPosition name = match List.tryFindIndex
(fun x -> x = name) reindeer with | Some(index)
-> index | None -> raise (ReindeerNotFoundExcep-
tion(name));; exception ReindeerNotFoundException
of string val reindeer : string list val getReindeerPo-
sition : string -> int > getReindeerPosition “Comet";;
val it : int = 4 > getReindeerPosition “Donner";;
val it : int = 6 > getReindeerPosition “Rudolf";;
FSI_0033+ReindeerNotFoundExceptionException:
Rudolf at FSI_0033.getReindeerPosition(String name)
at <StartupCode$FSI_0036>.$FSI_0036._main()
stopped due to error

We can pattern match on our new existing exception type
just as easily as any other exception:
> let tryGetReindeerPosition name = try getReindeer-
Position name with | ReindeerNotFoundException(s)
-> printfn “Got ReindeerNotFoundException: %s”
s −1;; val tryGetReindeerPosition : string -> int >
tryGetReindeerPosition “Comet";; val it : int = 4 >
tryGetReindeerPosition “Rudolf";; Got ReindeerNot-
FoundException: Rudolf val it : int = −1

4.6.5 Exception Handling Constructs

http://msdn.microsoft.com/en-us/library/system.idisposable.aspx

Chapter 5

Object Oriented Programming

5.1 Operator Overloading

Operator overloading allows programmers to provide new
behavior for the default operators in F#. In practice, pro-
grammers overload operators to provide a simplified syn-
tax for objects which can be combined mathematically.

5.1.1 Using Operators

You've already used operators:
let sum = x + y

Here + is example of using a mathematical addition op-
erator.

5.1.2 Operator Overloading

Operators are functions with special names, enclosed in
brackets. They must be defined as static class members.
Here’s an example on declaring + operator on complex
numbers:
type Complex = { Re: double Im: double } static
member (+) (left: Complex, right: Complex) = { Re =
left.Re + right.Re; Im = left.Im + right.Im }

In FSI, we can add two complex numbers as follows:
> let first = { Re = 1.0; Im = 7.0 };; val first : Complex
> let second = { Re = 2.0; Im = −10.5 };; val second :
Complex > first + second;; val it : Complex = {Re = 3.0;
Im = −3.5;}

5.1.3 Defining New Operators

In addition to overloading existing operators, its possible
to define new operators. The names of custom operators
can only be one or more of the following characters:

!%&*+−./<=>?@^|~

F# supports two types of operators: infix operators and
prefix operators.

Infix operators

An infix operator takes two arguments, with the opera-
tor appearing in between both arguments (i.e. arg1 {op}
arg2). We can define our own infix operators using the
syntax:
let (op) arg1 arg2 = ...

In addition to mathematical operators, F# has a variety of
infix operators defined as part of its library, for example:
let inline (|>) x f = f x let inline (::) hd tl = Cons(hd, tl)
let inline (:=) (x : 'a ref) value = x.contents <- value

Let’s say we're writing an application which performs a
lot of regex matching and replacing. We can match text
using Perl-style operators by defining our own operators
as follows:
open System.Text.RegularExpressions let (=~) input
pattern = Regex.IsMatch(input, pattern) let main() =
printfn “cat =~ dog: %b” (“cat” =~ “dog”) printfn “cat
=~ cat|dog: %b” (“cat” =~ “cat|dog”) printfn “monkey
=~ monk*: %b” (“monkey” =~ “monk*") main()

This program outputs the following:
cat =~ dog: false cat =~ cat|dog: true monkey =~ monk*:
true

Prefix Operators

Prefix operators take a single argument which appears to
the right side of the operator ({op}argument). You've
already seen how the ! operator is defined for ref cells:
type 'a ref = { mutable contents : 'a } let (!) (x : 'a ref) =
x.contents

Let’s say we're writing a number crunching application,
and we wanted to define some operators that work on lists

50

5.2. CLASSES 51

of numbers. We might define some prefix operators in fsi
as follows:
> let (!+) l = List.reduce (+) l let (!-) l = List.reduce (
-) l let (!*) l = List.reduce (*) l let (!/) l = List.reduce
(/) l;; val (!+) : int list -> int val (!-) : int list -> int val
(!*) : int list -> int val (!/) : int list -> int > !* [2; 3;
5];; val it : int = 30 > !+ [2; 3; 5];; val it : int = 10 > !- [2;
3; 7];; val it : int = −8 > !/ [100; 10; 2];; val it : int = 5

5.2 Classes

In the real world, an object is a “real” thing. A cat, per-
son, computer, and a roll of duct tape are all “real” things
in the tangible sense. When we think about these things,
we can broadly describe them in terms of a number of
attributes:

• Properties: a person has a name, a cat has four legs,
computers have a price tag, duct tape is sticky.

• Behaviors: a person reads the newspaper, cats sleep
all day, computers crunch numbers, duct tape at-
taches things to other things.

• Types/group membership: an employee is a type of
person, a cat is a pet, a Dell and Mac are types of
computers, duct tape is part of the broader family of
adhesives.

In the programming world, an “object” is, in the simplest
of terms, a model of something in the real world. Object-
oriented programming (OOP) exists because it allows
programmers to model real-world entities and simulate
their interactions in code. Just like their real-world coun-
terparts, objects in computer programming have proper-
ties and behaviors, and can be classified according to their
type.
While we can certainly create objects that represents cats,
people, and adhesives, objects can also represent less con-
crete things, such as a bank account or a business rule.
Although the scope of OOP has expanded to include
some advanced concepts such as design patterns and the
large-scale architecture of applications, this page will
keep things simple and limit the discussion of OOP to
data modeling.

5.2.1 Defining an Object

Before you create an object, you have to identify the prop-
erties of your object and describe what it does. You de-
fine properties and methods of an object in a class. There
are actually two different syntaxes for defining a class: an
implicit syntax and an explicit syntax.

Implicit Class Construction

Implicit class syntax is defined as follows:
type TypeName optional-type-arguments arguments [
as ident] = [inherit type { as base }] [let-binding |
let-rec bindings] * [do-statement] * [abstract-binding |
member-binding | interface-implementation] *

Elements in brackets are optional, elements fol-
lowed by a * may appear zero or more times.

This syntax above is not as daunting as it looks. Here’s a
simple class written in implicit style:
type Account(number : int, holder : string) = class let
mutable amount = 0m member x.Number = number
member x.Holder = holder member x.Amount = amount
member x.Deposit(value) = amount <- amount + value
member x.Withdraw(value) = amount <- amount - value
end

The code above defines a class called Account, which has
three properties and twomethods. Let’s take a closer look
at the following:
type Account(number : int, holder : string) = class
The underlined code is called the class constructor. A
constructor is a special kind of function used to initial-
ize the fields in an object. In this case, our constructor
defines two values, number and holder, which can be ac-
cessed anywhere in our class. You create an instance of
Account by using the new keyword and passing the ap-
propriate parameters into the constructor as follows:
let bob = new Account(123456, “Bob’s Saving”)

Additionally, let’s look at the way a member is defined:
member x.Deposit(value) = amount <- amount + value
The x above is an alias for the object currently in scope.
Most OO languages provide an implicit this or self vari-
able to access the object in scope, but F# requires pro-
grammers to create their own alias.
After we can create an instance of our Account, we
can access its properties using .propertyName notation.
Here’s an example in FSI:
> let printAccount (x : Account) = printfn “x.Number:
%i, x.Holder: %s, x.Amount: %M” x.Number x.Holder
x.Amount;; val printAccount : Account -> unit >
let bob = new Account(123456, “Bob’s Savings”);;
val bob : Account > printAccount bob;; x.Number:
123456, x.Holder: Bob’s Savings, x.Amount: 0 val it
: unit = () > bob.Deposit(100M);; val it : unit = ()
> printAccount bob;; x.Number: 123456, x.Holder:
Bob’s Savings, x.Amount: 100 val it : unit = () >
bob.Withdraw(29.95M);; val it : unit = () > printAccount
bob;; x.Number: 123456, x.Holder: Bob’s Savings,

52 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

x.Amount: 70.05

Example Let’s use this class in a real program:
open System type Account(number : int, holder : string)
= class let mutable amount = 0m member x.Number =
number member x.Holder = holder member x.Amount
= amount member x.Deposit(value) = amount <-
amount + value member x.Withdraw(value) = amount
<- amount - value end let homer = new Account(12345,
“Homer”) let marge = new Account(67890, “Marge”) let
transfer amount (source : Account) (target : Account)
= source.Withdraw amount target.Deposit amount let
printAccount (x : Account) = printfn “x.Number: %i,
x.Holder: %s, x.Amount: %M” x.Number x.Holder
x.Amount let main() = let printAccounts() = [homer;
marge] |> Seq.iter printAccount printfn "\nInializing
account” homer.Deposit 50M marge.Deposit 100M
printAccounts() printfn "\nTransferring $30 from Marge
to Homer” transfer 30M marge homer printAccounts()
printfn "\nTransferring $75 from Homer to Marge”
transfer 75M homer marge printAccounts() main()

The program has the following types:
type Account = class new : number:int * holder:string
-> Account member Deposit : value:decimal -> unit
member Withdraw : value:decimal -> unit member
Amount : decimal member Holder : string member
Number : int end val homer : Account val marge :
Account val transfer : decimal -> Account -> Account
-> unit val printAccount : Account -> unit

The program outputs the following:
Initializing account x.Number: 12345, x.Holder: Homer,
x.Amount: 50 x.Number: 67890, x.Holder: Marge,
x.Amount: 100 Transferring $30 from Marge to Homer
x.Number: 12345, x.Holder: Homer, x.Amount: 80
x.Number: 67890, x.Holder: Marge, x.Amount: 70
Transferring $75 from Homer to Marge x.Number:
12345, x.Holder: Homer, x.Amount: 5 x.Number:
67890, x.Holder: Marge, x.Amount: 145

Example using the do keyword The do keyword is
used for post-constructor initialization. For example, let’s
say we wanted to create an object which represents a
stock. We only need to pass in the stock symbol, and
initialize the rest of the properties in our constructor:
open System open System.Net type Stock(symbol
: string) = class let url = "http://download.
finance.yahoo.com/d/quotes.csv?s=" + symbol +
"&f=sl1d1t1c1ohgv&e=.csv” let mutable _symbol =
String.Empty let mutable _current = 0.0 let mutable
_open = 0.0 let mutable _high = 0.0 let mutable _low
= 0.0 let mutable _volume = 0 do (* We initialize

our object in the do block *) let webClient = new
WebClient() (* Data comes back as a comma-seperated
list, so we split it on each comma *) let data = we-
bClient.DownloadString(url).Split([|','|]) _symbol <-
data.[0] _current <- float data.[1] _open <- float data.[5]
_high <- float data.[6] _low <- float data.[7] _volume
<- int data.[8] member x.Symbol = _symbol member
x.Current = _current member x.Open = _open mem-
ber x.High = _high member x.Low = _low member
x.Volume = _volume end let main() = let stocks =
["msft"; “noc"; “yhoo"; “gm"] |> Seq.map (fun x -> new
Stock(x)) stocks |> Seq.iter (fun x -> printfn “Symbol:
%s (%F)" x.Symbol x.Current) main()

This program has the following types:
type Stock = class new : symbol:string -> Stock member
Current : float member High : float member Low : float
member Open : float member Symbol : string member
Volume : int end

This program outputs the following (your outputs will
vary):
Symbol: “MSFT” (19.130000) Symbol: “NOC”
(43.240000) Symbol: “YHOO” (12.340000) Symbol:
“GM” (3.660000)

Note: It’s possible to have any number of do
statements in a class definition, although there’s
no particular reason why you'd need more than
one.

Explicit Class Definition

Classes written in explicit style follow this format:
type TypeName = [inherit type] [val-definitions] [
new (optional-type-arguments arguments) [as ident]
= { field-initialization } [then constructor-statements
]] * [abstract-binding | member-binding | interface-
implementation] *

Here’s a class defined using the explicit syntax:
type Line = class val X1 : float val Y1 : float val X2 :
float val Y2 : float new (x1, y1, x2, y2) = { X1 = x1; Y1
= y1; X2 = x2; Y2 = y2} member x.Length = let sqr x =
x * x sqrt(sqr(x.X1 - x.X2) + sqr(x.Y1 - x.Y2)) end

Each val defines a field in our object. Unlike other object-
oriented languages, F# does not implicitly initialize fields
in a class to any value. Instead, F# requires programmers
to define a constructor and explicitly initialize each field
in their object with a value.
We can perform some post-constructor processing using
a then block as follows:
type Line = class val X1 : float val Y1 : float val X2 :

5.2. CLASSES 53

float val Y2 : float new (x1, y1, x2, y2) as this = { X1
= x1; Y1 = y1; X2 = x2; Y2 = y2;} then printfn “Line
constructor: {(%F, %F), (%F, %F)}, Line.Length: %F”
this.X1 this.Y1 this.X2 this.Y2 this.Length member
x.Length = let sqr x = x * x sqrt(sqr(x.X1 - x.X2) +
sqr(x.Y1 - x.Y2)) end

Notice that we have to add an alias after our construc-
tor, new (x1, y1, x2, y2) as this), to access the fields of
our object being constructed. Each time we create a Line
object, the constructor will print to the console. We can
demonstrate this using fsi:
> let line = new Line(1.0, 1.0, 4.0, 2.5);; val line : Line
Line constructor: {(1.000000, 1.000000), (4.000000,
2.500000)}, Line.Length: 3.354102

Example Using Two Constructors Since the con-
structor is defined explicitly, we have the option to pro-
vide more than one constructor.
open System open System.Net type Car = class val
used : bool val owner : string val mutable mileage : int
(* first constructor *) new (owner) = { used = false;
owner = owner; mileage = 0 } (* another constructor *)
new (owner, mileage) = { used = true; owner = owner;
mileage = mileage } end let main() = let printCar (c :
Car) = printfn “c.used: %b, c.owner: %s, c.mileage:
%i” c.used c.owner c.mileage let stevesNewCar = new
Car(“Steve”) let bobsUsedCar = new Car(“Bob”, 83000)
let printCars() = [stevesNewCar; bobsUsedCar] |>
Seq.iter printCar printfn "\nCars created” printCars()
printfn "\nSteve drives all over the state” stevesNew-
Car.mileage <- stevesNewCar.mileage + 780 printCars()
printfn "\nBob commits odometer fraud” bobsUsed-
Car.mileage <- 0 printCars() main()

This program has the following types:
type Car = class val used: bool val owner: string val
mutable mileage: int new : owner:string * mileage:int ->
Car new : owner:string -> Car end

Notice that our val fields are included in the public inter-
face of our class definition.
This program outputs the following:
Cars created c.used: false, c.owner: Steve, c.mileage:
0 c.used: true, c.owner: Bob, c.mileage: 83000 Steve
drives all over the state c.used: false, c.owner: Steve,
c.mileage: 780 c.used: true, c.owner: Bob, c.mileage:
83000 Bob commits odometer fraud c.used: false,
c.owner: Steve, c.mileage: 780 c.used: true, c.owner:
Bob, c.mileage: 0

Differences Between Implicit and Explicit Syntaxes

As you've probably guessed, the major difference be-
tween the two syntaxes is related to the constructor: the
explicit syntax forces a programmer to provide explicit
constructor(s), whereas the implicit syntax fuses the pri-
mary constructor with the class body. However, there are
a few other subtle differences:

• The explicit syntax does not allow programmers to
declare let and do bindings.

• Even though you can use val fields in the im-
plicit syntax, they must have the attribute [<Default-
Value>] and be mutable. It is more convenient to
use let bindings in this case. You can add public
member accessors when they need to be public.

• In the implicit syntax, the primary constructor pa-
rameters are visible throughout the whole class
body. By using this feature, you do not need to write
code that copies constructor parameters to instance
members.

• While both syntaxes support multiple constructors,
when you declare additional constructors with the
implicit syntax, they must call the primary construc-
tor. In the explicit syntax all constructors are de-
clared with new() and there is no primary construc-
tor that needs to be referenced from others.

In general, its up to the programmer to use the implicit
or explicit syntax to define classes. However, the implicit
syntax is used more often in practice as it tends to result
in shorter, more readable class definitions.

Class Inference

F#'s #light syntax allows programmers to omit the class
and end keywords in class definitions, a feature com-
monly referred to as class inference or type kind inference.
For example, there is no difference between the following
class definitions:
Both classes compile down to the same bytecode, but the
code using class inference allows us to omit a few unnec-
essary keywords.
Class inference and class explicit styles are considered ac-
ceptable. At the very least, when writing F# libraries,
don't define half of your classes using class inference and
the other half using class explicit style—pick one style
and use it consistently for all of your classes throughout
your project.

5.2.2 Class Members

Instance and Static Members

There are two types of members you can add to an object:

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785727

54 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

• Instance members, which can only be called from an
object instance created using the new keyword.

• Static members, which are not associated with any
object instance.

The following class has a static method and an instance
method:
type SomeClass(prop : int) = class member x.Prop =
prop static member SomeStaticMethod = “This is a static
method” end

We invoke a static method using the form class-
Name.methodName. We invoke instance methods by
creating an instance of our class and calling the methods
using classInstance.methodName. Here is a demonstra-
tion in fsi:
> SomeClass.SomeStaticMethod;; (* invoking static
method *) val it : string = “This is a static method”
> SomeClass.Prop;; (* doesn't make sense, we haven't
created an object instance yet *) SomeClass.Prop;; (*
doesn't make sense, we haven't created an object instance
yet *) ^^^^^^^^^^^^^^^ stdin(78,1): error FS0191:
property 'Prop' is not static. > let instance = new Some-
Class(5);; val instance : SomeClass > instance.Prop;;
(* now we have an instance, we can call our instance
method *) val it : int = 5 > instance.SomeStaticMethod;;
(* can't invoke static method from instance *) in-
stance.SomeStaticMethod;; (* can't invoke static
method from instance *) ^^^^^^^^^^^^^^^^^^^^^^^^^^
stdin(81,1): error FS0191: property 'SomeStaticMethod'
is static.

We can, of course, invoke instance methods from objects
passed into static methods, for example, let’s say we add
a Copy method to our object defined above:
type SomeClass(prop : int) = class member x.Prop =
prop static member SomeStaticMethod = “This is a static
method” static member Copy (source : SomeClass) =
new SomeClass(source.Prop) end

We can experiment with this method in fsi:
> let instance = new SomeClass(10);; val instance :
SomeClass > let shallowCopy = instance;; (* copies
pointer to another symbol *) val shallowCopy :
SomeClass > let deepCopy = SomeClass.Copy in-
stance;; (* copies values into a new object *) val
deepCopy : SomeClass > open System;; > Ob-
ject.ReferenceEquals(instance, shallowCopy);; val it :
bool = true > Object.ReferenceEquals(instance, deep-
Copy);; val it : bool = false

Object.ReferenceEquals is a static method on the Sys-
tem.Object class which determines whether two objects
instances are the same object. As shown above, our Copy

method takes an instance of SomeClass and accesses its
Prop property.
When should you use static methods rather than in-
stance methods?
When the designers of the .NET framework were design-
ing the System.String class, they had to decide where the
Lengthmethod should go. They had the option ofmaking
the property an instance method (s.Length) or making it
static (String.GetLength(s)). The .NET designers chose
to make Length an instance method because it is an in-
trinsic property of strings.
On the other hand, the String class also has several static
methods, including String.Concat which takes a list of
string and concatenates them all together. Concatenat-
ing strings is instance-agnostic, its does not depend on
the instance members of any particular strings.
The following general principles apply to all OO lan-
guages:

• Instance members should be used to access prop-
erties intrinsic to an object, such as stringIn-
stance.Length.

• Instance methods should be used when they depend
on state of a particular object instance, such as strin-
gInstance.Contains.

• Instance methods should be used when its expected
that programmers will want to override the method
in a derived class.

• Static methods should not depend on a particular in-
stance of an object, such as Int32.TryParse.

• Static methods should return the same value as long
as the inputs remain the same.

• Constants, which are values that don't change for any
class instance, should be declared as a static mem-
bers, such as System.Boolean.TrueString.

Getters and Setters

Getters and setters are special functions which allow pro-
grammers to read and write to members using a conve-
nient syntax. Getters and setters are written using this
format:
member alias.PropertyName with get() = some-value
and set(value) = some-assignment

Here’s a simple example using fsi:
> type IntWrapper() = class let mutable num = 0 member
x.Num with get() = num and set(value) = num <- value
end;; type IntWrapper = class new : unit -> IntWrapper
member Num : int member Num : int with set end > let
wrapper = new IntWrapper();; val wrapper : IntWrapper

5.2. CLASSES 55

> wrapper.Num;; val it : int = 0 > wrapper.Num <- 20;;
val it : unit = () > wrapper.Num;; val it : int = 20

Getters and setters are used to expose private members
to outside world. For example, our Num property allows
users to read/write to the internal num variable. Since
getters and setters are glorified functions, we can use them
to sanitize input before writing the values to our internal
variables. For example, we can modify our IntWrapper
class to constrain our to values between 0 and 10 by mod-
ifying our class as follows:
type IntWrapper() = class let mutable num = 0 member
x.Num with get() = num and set(value) = if value > 10
|| value < 0 then raise (new Exception(“Values must be
between 0 and 10”)) else num <- value end

We can use this class in fsi:
> let wrapper = new IntWrapper();; val wrapper :
IntWrapper > wrapper.Num <- 5;; val it : unit = ()
> wrapper.Num;; val it : int = 5 > wrapper.Num <-
20;; System.Exception: Values must be between 0 and
10 at FSI_0072.IntWrapper.set_Num(Int32 value) at
<StartupCode$FSI_0076>.$FSI_0076._main() stopped
due to error

Adding Members to Records and Unions

Its just as easy to addmembers to records and union types
as well.
Record example:
> type Line = { X1 : float; Y1 : float; X2 : float; Y2 : float
} with member x.Length = let sqr x = x * x sqrt(sqr(x.X1
- x.X2) + sqr(x.Y1 - x.Y2)) member x.ShiftH amount
= { x with X1 = x.X1 + amount; X2 = x.X2 + amount
} member x.ShiftV amount = { x with Y1 = x.Y1 +
amount; Y2 = x.Y2 + amount };; type Line = {X1: float;
Y1: float; X2: float; Y2: float;} with member ShiftH
: amount:float -> Line member ShiftV : amount:float
-> Line member Length : float end > let line = { X1 =
1.0; Y1 = 2.0; X2 = 5.0; Y2 = 4.5 };; val line : Line >
line.Length;; val it : float = 4.716990566 > line.ShiftH
10.0;; val it : Line = {X1 = 11.0; Y1 = 2.0; X2 = 15.0;
Y2 = 4.5;} > line.ShiftV −5.0;; val it : Line = {X1 =
1.0; Y1 = −3.0; X2 = 5.0; Y2 = −0.5;}

Union example
> type shape = | Circle of float | Rectangle of float * float
| Triangle of float * float with member x.Area = match
x with | Circle(r) -> Math.PI * r * r | Rectangle(b, h)
-> b * h | Triangle(b, h) -> b * h / 2.0 member x.Scale
value = match x with | Circle(r) -> Circle(r + value)
| Rectangle(b, h) -> Rectangle(b + value, h + value) |
Triangle(b, h) -> Triangle(b + value, h + value);; type

shape = | Circle of float | Rectangle of float * float |
Triangle of float * float with member Scale : value:float
-> shape member Area : float end > let mycircle =
Circle(5.0);; val mycircle : shape > mycircle.Area;; val
it : float = 78.53981634 > mycircle.Scale(7.0);; val it :
shape = Circle 12.0

5.2.3 Generic classes

We can also create classes which take generic types:
type 'a GenericWrapper(initialVal : 'a) = class let
mutable internalVal = initialVal member x.Value with
get() = internalVal and set(value) = internalVal <- value
end

We can use this class in FSI as follows:
> let intWrapper = new GenericWrapper<_>(5);; val
intWrapper : int GenericWrapper > intWrapper.Value;;
val it : int = 5 > intWrapper.Value <- 20;; val it : unit = ()
> intWrapper.Value;; val it : int = 20 > intWrapper.Value
<- 2.0;; (* throws an exception *) intWrapper.Value <-
2.0;; (* throws an exception *) --------------------^^^^
stdin(156,21): error FS0001: This expression has type
float but is here used with type int. > let boolWrapper =
new GenericWrapper<_>(true);; val boolWrapper : bool
GenericWrapper > boolWrapper.Value;; val it : bool =
true

Generic classes help programmers generalize classes to
operate on multiple different types. They are used in fun-
damentally the sameway as all other generic types already
seen in F#, such as Lists, Sets, Maps, and union types.

5.2.4 Pattern Matching Objects

While it’s not possible to match objects based on their
structure in quite the same way that we do for lists and
union types, F# allows programmers to match on types
using the syntax:
match arg with | :? type1 -> expr | :? type2 -> expr

Here’s an example which uses type testing:
type Cat() = class member x.Meow() = printfn “Meow”
end type Person(name : string) = class member
x.Name = name member x.SayHello() = printfn “Hi,
I'm %s” x.Name end type Monkey() = class member
x.SwingFromTrees() = printfn “swinging from trees” end
let handlesAnything (o : obj) = match o with | null ->
printfn "<null>" | :? Cat as cat -> cat.Meow() | :? Person
as person -> person.SayHello() | _ -> printfn “I don't
recognize type '%s’" (o.GetType().Name) let main() =
let cat = new Cat() let bob = new Person(“Bob”) let bill
= new Person(“Bill”) let phrase = “Hello world!" let

56 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

monkey = new Monkey() handlesAnything cat handle-
sAnything bob handlesAnything bill handlesAnything
phrase handlesAnything monkey handlesAnything null
main()

This program outputs:
Meow Hi, I'm Bob Hi, I'm Bill I don't recognize type
'String' I don't recognize type 'Monkey' <null>

5.3 Inheritance

Many object-oriented languages use inheritance exten-
sively in the .NET BCL to construct class hierarchies.

5.3.1 Subclasses

A subclass is, in the simplest terms, a class derived from
a class which has already been defined. A subclass inher-
its its members from a base class in addition to adding
its own members. A subclass is defined using the inherit
keyword as shown below:
type Person(name) = member x.Name = name member
x.Greet() = printfn “Hi, I'm %s” x.Name type Stu-
dent(name, studentID : int) = inherit Person(name) let
mutable _GPA = 0.0 member x.StudentID = studentID
member x.GPA with get() = _GPA and set value =
_GPA <- value type Worker(name, employer : string) =
inherit Person(name) let mutable _salary = 0.0 member
x.Salary with get() = _salary and set value = _salary <-
value member x.Employer = employer

Our simple class hierarchy looks like this:
System.Object (* All classes descend from *) - Person -
Student - Worker
The Student andWorker subclasses both inherit theName
and Greet methods from the Person base class. This can
be demonstrated in fsi:
> let somePerson, someStudent, someWorker = new
Person(“Juliet”), new Student(“Monique”, 123456),
new Worker(“Carla”, “Awesome Hair Salon”);; val
someWorker : Worker val someStudent : Student val
somePerson : Person > somePerson.Name, someS-
tudent.Name, someWorker.Name;; val it : string *
string * string = (“Juliet”, “Monique”, “Carla”) >
someStudent.StudentID;; val it : int = 123456 >
someWorker.Employer;; val it : string = “Awesome
Hair Salon” > someWorker.ToString();; (* ToString
method inherited from System.Object *) val it : string =
“FSI_0002+Worker”

.NET’s object model supports single-class inheritance,
meaning that a subclass is limited to one base class. In

other words, its not possible to create a class which de-
rives from Student and Employee simultaneously.

Overriding Methods

Occasionally, you may want a derived class to change the
default behavior of methods inherited from the base class.
For example, the output of the .ToString() method above
isn't very useful. We can override that behavior with a
different implementation using the override:
type Person(name) = member x.Name = name member
x.Greet() = printfn “Hi, I'm %s” x.Name override
x.ToString() = x.Name (* The ToString() method is
inherited from System.Object *)

We've overridden the default implementation of the
ToString() method, causing it to print out a person’s
name.
Methods in F# are not overridable by default. If you
expect users will want to override methods in a derived
class, you have to declare your method as overridable us-
ing the abstract and default keywords as follows:
type Person(name) = member x.Name = name abstract
Greet : unit -> unit default x.Greet() = printfn “Hi,
I'm %s” x.Name type Quebecois(name) = inherit
Person(name) override x.Greet() = printfn “Bonjour, je
m'appelle %s, eh.” x.Name

Our class Person provides a Greet method which may be
overridden in derived classes. Here’s an example of these
two classes in fsi:
> let terrance, phillip = new Person(“Terrance”), new
Quebecois(“Phillip”);; val terrance : Person val phillip
: Quebecois > terrance.Greet();; Hi, I'm Terrance val
it : unit = () > phillip.Greet();; Bonjour, je m'appelle
Phillip, eh.

Abstract Classes

An abstract class is one which provides an incomplete im-
plementation of an object, and requires a programmer to
create subclasses of the abstract class to fill in the rest of
the implementation. For example, consider the following:
[<AbstractClass>] type Shape(position : Point) = mem-
ber x.Position = position override x.ToString() = sprintf
“position = {%i, %i}, area = %f” position.X position.Y
(x.Area()) abstract member Draw : unit -> unit abstract
member Area : unit -> float

The first thing you'll notice is the AbstractClass attribute,
which tells the compiler that our class has some abstract
members. Additionally, you notice two abstract mem-
bers, Draw and Area don't have an implementation, only

5.3. INHERITANCE 57

a type signature.
We can't create an instance of Shape because the class
hasn't been fully implemented. Instead, we have to de-
rive from Shape and override the Draw and Area methods
with a concrete implementation:
type Circle(position : Point, radius : float) = inherit
Shape(position) member x.Radius = radius over-
ride x.Draw() = printfn "(Circle)" override x.Area() =
Math.PI * radius * radius type Rectangle(position : Point,
width : float, height : float) = inherit Shape(position)
member x.Width = width member x.Height = height
override x.Draw() = printfn "(Rectangle)" override
x.Area() = width * height type Square(position : Point,
width : float) = inherit Shape(position) member x.Width
= width member x.ToRectangle() = new Rectan-
gle(position, width, width) override x.Draw() = printfn
"(Square)" override x.Area() = width * width type Tri-
angle(position : Point, sideA : float, sideB : float, sideC :
float) = inherit Shape(position) member x.SideA = sideA
member x.SideB = sideB member x.SideC = sideC over-
ride x.Draw() = printfn "(Triangle)" override x.Area() =
(* Heron’s formula *) let a, b, c = sideA, sideB, sideC let
s = (a + b + c) / 2.0 Math.Sqrt(s * (s - a) * (s - b) * (s - c))

Now we have several different implementations of the
Shape class. We can experiment with these in fsi:
> let position = { X = 0; Y = 0 };; val position :
Point > let circle, rectangle, square, triangle = new
Circle(position, 5.0), new Rectangle(position, 2.0, 7.0),
new Square(position, 10.0), new Triangle(position,
3.0, 4.0, 5.0);; val triangle : Triangle val square :
Square val rectangle : Rectangle val circle : Circle
> circle.ToString();; val it : string = “Circle, position
= {0, 0}, area = 78.539816” > triangle.ToString();;
val it : string = “Triangle, position = {0, 0}, area
= 6.000000” > square.Width;; val it : float = 10.0
> square.ToRectangle().ToString();; val it : string =
“Rectangle, position = {0, 0}, area = 100.000000” >
rectangle.Height, rectangle.Width;; val it : float * float =
(7.0, 2.0)

5.3.2 Working With Subclasses

Up-casting and Down-casting

A type cast is an operation which changes the type of an
object from one type to another. This is not the same as
a map function, because a type cast does not return an
instance of a new object, it returns the same instance of
an object with a different type.
For example, let’s say B is a subclass of A. If we have
an instance of B, we are able to cast as an instance of A.
Since A is upward in the class hiearchy, we call this an
up-cast. We use the :> operator to perform upcasts:

> let regularString = “Hello world";; val regularString
: string > let upcastString = “Hello world” :> obj;; val
upcastString : obj > regularString.ToString();; val it :
string = “Hello world” > regularString.Length;; val it
: int = 11 > upcastString.ToString();; (* type obj has
a .ToString method *) val it : string = “Hello world”
> upcastString.Length;; (* however, obj does not have
Length method *) upcastString.Length;; (* however, obj
does not have Length method *) -------------^^^^^^^
stdin(24,14): error FS0039: The field, constructor or
member 'Length' is not defined.

Up-casting is considered “safe”, because a derived class is
guaranteed to have all of the same members as an ances-
tor class. We can, if necessary, go in the opposite direc-
tion: we can down-cast from an ancestor class to a derived
class using the :?> operator:
> let intAsObj = 20 :> obj;; val intAsObj : obj > intAsObj,
intAsObj.ToString();; val it : obj * string = (20, “20”) >
let intDownCast = intAsObj :?> int;; val intDownCast
: int > intDownCast, intDownCast.ToString();; val
it : int * string = (20, “20”) > let stringDownCast =
intAsObj :?> string;; (* boom! *) val stringDownCast
: string System.InvalidCastException: Unable to cast
object of type 'System.Int32' to type 'System.String'. at
<StartupCode$FSI_0067>.$FSI_0067._main() stopped
due to error

Since intAsObj holds an int boxed as an obj, we can
downcast to an int as needed. However, we cannot down-
cast to a string because its an incompatible type. Down-
casting is considered “unsafe” because the error isn't de-
tectable by the type-checker, so an error with a down-cast
always results in a runtime exception.

Up-casting example open System type Point =
{ X : int; Y : int } [<AbstractClass>] type Shape()
= override x.ToString() = sprintf "%s, area = %f”
(x.GetType().Name) (x.Area()) abstract member Draw
: unit -> unit abstract member Area : unit -> float
type Circle(radius : float) = inherit Shape() member
x.Radius = radius override x.Draw() = printfn "(Circle)"
override x.Area() = Math.PI * radius * radius type
Rectangle(width : float, height : float) = inherit Shape()
member x.Width = width member x.Height = height
override x.Draw() = printfn "(Rectangle)" override
x.Area() = width * height type Square(width : float)
= inherit Shape() member x.Width = width member
x.ToRectangle() = new Rectangle(width, width) override
x.Draw() = printfn "(Square)" override x.Area() =
width * width type Triangle(sideA : float, sideB : float,
sideC : float) = inherit Shape() member x.SideA =
sideA member x.SideB = sideB member x.SideC =
sideC override x.Draw() = printfn "(Triangle)" override
x.Area() = (* Heron’s formula *) let a, b, c = sideA,
sideB, sideC let s = (a + b + c) / 2.0 Math.Sqrt(s * (s -

58 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

a) * (s - b) * (s - c)) let shapes = [(new Circle(5.0) :>
Shape); (new Circle(12.0) :> Shape); (new Square(10.5)
:> Shape); (new Triangle(3.0, 4.0, 5.0) :> Shape); (new
Rectangle(5.0, 2.0) :> Shape)] (* Notice we have to cast
each object as a Shape *) let main() = shapes |> Seq.iter
(fun x -> printfn “x.ToString: %s” (x.ToString())) main()

This program has the following types:
type Point = {X: int; Y: int;} type Shape = class abstract
member Area : unit -> float abstract member Draw
: unit -> unit new : unit -> Shape override ToString
: unit -> string end type Circle = class inherit Shape
new : radius:float -> Circle override Area : unit ->
float override Draw : unit -> unit member Radius :
float end type Rectangle = class inherit Shape new :
width:float * height:float -> Rectangle override Area
: unit -> float override Draw : unit -> unit member
Height : float member Width : float end type Square =
class inherit Shape new : width:float -> Square override
Area : unit -> float override Draw : unit -> unit member
ToRectangle : unit -> Rectangle member Width : float
end type Triangle = class inherit Shape new : sideA:float
* sideB:float * sideC:float -> Triangle override Area :
unit -> float override Draw : unit -> unit member SideA
: float member SideB : float member SideC : float end val
shapes : Shape list

This program outputs:
x.ToString: Circle, area = 78.539816 x.ToString: Cir-
cle, area = 452.389342 x.ToString: Square, area =
110.250000 x.ToString: Triangle, area = 6.000000
x.ToString: Rectangle, area = 10.000000

Public, Private, and Protected Members

5.4 Interfaces

An object’s interface refers to all of the public members
and functions that a function exposes to consumers of the
object. For example, take the following:
type Monkey(name : string, birthday : DateTime)
= let mutable _birthday = birthday let mutable
_lastEaten = DateTime.Now let mutable _food-
sEaten = [] : string list member this.Speak() =
printfn “Ook ook!" member this.Name = name
member this.Birthday with get() = _birthday and
set(value) = _birthday <- value member internal
this.UpdateFoodsEaten(food) = _foodsEaten <- food
:: _foodsEaten member internal this.ResetLastEaten()
= _lastEaten <- DateTime.Now member this.IsHungry
= (DateTime.Now - _lastEaten).TotalSeconds >= 5.0
member this.GetFoodsEaten() = _lastEaten mem-
ber this.Feed(food) = this.UpdateFoodsEaten(food)
this.ResetLastEaten() this.Speak()

This class contains several public, private, and internal
members. However, consumers of this class can only ac-
cess the publicmembers; when a consumer uses this class,
they see the following interface:
type Monkey = class new : name:string *
birthday:DateTime -> Monkey member Feed :
food:string -> unit member GetFoodsEaten : unit
-> DateTime member Speak : unit -> unit member
Birthday : DateTime member IsHungry : bool member
Name : string member Birthday : DateTime with set end

Notice the _birthday, _lastEaten, _foodsEaten, Update-
FoodsEaten, and ResetLastEaten members are inaccessi-
ble to the outside world, so they are not part of this ob-
ject’s public interface.
All interfaces you've seen so far have been intrinsically
tied to a specific object. However, F# and many other
OO languages allow users to define interfaces as stand-
alone types, allowing us to effectively separate an object’s
interface from its implementation.

5.4.1 Defining Interfaces

According to the F# specification, interfaces are defined
with the following syntax:
type type-name = interface inherits-decl member-defns
end

Note: The interface/end tokens can be omitted
when using the #light syntax option, in which
case Type Kind Inference (§10.1) is used to
determine the kind of the type. The presence
of any non-abstract members or constructors
means a type is not an interface type.

For example:
type ILifeForm = (* .NET convention recommends
the prefix 'I' on all interfaces *) abstract Name : string
abstract Speak : unit -> unit abstract Eat : unit -> unit

5.4.2 Using Interfaces

Since they only define a set of public method signatures,
users need to create an object to implement the interface.
Here are three classes which implement the ILifeForm
interface in fsi:
> type ILifeForm = abstract Name : string abstract
Speak : unit -> unit abstract Eat : unit -> unit type
Dog(name : string, age : int) = member this.Age =
age interface ILifeForm with member this.Name =
name member this.Speak() = printfn “Woof!" mem-
ber this.Eat() = printfn “Yum, doggy biscuits!" type

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785736
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785727

5.4. INTERFACES 59

Monkey(weight : float) = let mutable _weight = weight
member this.Weight with get() = _weight and set(value)
= _weight <- value interface ILifeForm with member
this.Name = “Monkey!!!" member this.Speak() = printfn
“Ook ook” member this.Eat() = printfn “Bananas!" type
Ninja() = interface ILifeForm with member this.Name
= “Ninjas have no name” member this.Speak() = printfn
“Ninjas are silent, deadly killers” member this.Eat() =
printfn “Ninjas don't eat, they wail on guitars because
they're totally sweet";; type ILifeForm = interface ab-
stract member Eat : unit -> unit abstract member Speak :
unit -> unit abstract member Name : string end type Dog
= class interface ILifeForm new : name:string * age:int
-> Dog member Age : int end type Monkey = class inter-
face ILifeForm new : weight:float -> Monkey member
Weight : float member Weight : float with set end type
Ninja = class interface ILifeForm new : unit -> Ninja end

Typically, we call an interface an abstraction, and any
class which implements the interface as a concrete imple-
mentation. In the example above, ILifeForm is an ab-
straction, whereas Dog, Monkey, and Ninja are concrete
implementations.
Its worth noting that interfaces only define instance mem-
bers signatures on objects. In other words, they cannot
define static member signatures or constructor signatures.

What are interfaces used for?

Interfaces are amystery to newbie programmers (after all,
what’s the point of creating a type with no implementa-
tion?), however they are essential to many object-oriented
programming techniques. Interfaces allow programmers
to generalize functions to all classes which implement a
particular interface, even if those classes don't necessarily
descend from one another. For example, using the Dog,
Monkey, and Ninja classes defined above, we can write
a method to operate on all of them, as well as any other
classes which implement the ILifeForm interface.

Implementing Interfaces with Object Expressions

Interfaces are extremely useful for sharing snippets of
implementation logic between other classes, however it
can be very cumbersome to define and implement a new
class for ad hoc interfaces. Object expressions allow users
to implement interfaces on anonymous classes using the
following syntax:
{ new ty0 [args-expr] [as base-ident] [with
val-or-member-defns end] interface ty1 with [val-
or-member-defns1 end] … interface tyn with [
val-or-member-defnsn end] }

Using a concrete example, the .NET BCL has a method
called System.Array.Sort<T>(T array, IComparer<T>),

where IComparer<T> exposes a single method called
Compare. Let’s say we wanted to sort an array on an ad
hoc basis using this method; rather than litter our code
with one-time use classes, we can use object expressions
to define anonymous classes on the fly:
> open System open System.Collections.Generic
type person = { name : string; age : int } let peo-
ple = [|{ name = “Larry"; age = 20 }; { name =
“Moe"; age = 30 }; { name = “Curly"; age = 25
} |] let sortAndPrint msg items (comparer : Sys-
tem.Collections.Generic.IComparer<person>) = Ar-
ray.Sort(items, comparer) printf "%s: " msg Seq.iter
(fun x -> printf "(%s, %i) " x.name x.age) items
printfn "" (* sorting by age *) sortAndPrint “age”
people { new IComparer<person> with member
this.Compare(x, y) = x.age.CompareTo(y.age) } (*
sorting by name *) sortAndPrint “name” people { new
IComparer<person> with member this.Compare(x, y)
= x.name.CompareTo(y.name) } (* sorting by name
descending *) sortAndPrint “name desc” people { new
IComparer<person> with member this.Compare(x, y) =
y.name.CompareTo(x.name) };; type person = { name:
string; age: int; } val people : person array val sortAnd-
Print : string -> person array -> IComparer<person>
-> unit age: (Larry, 20) (Curly, 25) (Moe, 30) name:
(Curly, 25) (Larry, 20) (Moe, 30) name desc: (Moe, 30)
(Larry, 20) (Curly, 25)

Implementing Multiple Interfaces

Unlike inheritance, its possible to implement multiple in-
terfaces:
open System type Person(name : string, age : int)
= member this.Name = name member this.Age =
age (* IComparable is used for ordering instances
*) interface IComparable<Person> with member
this.CompareTo(other) = (* sorts by name, then
age *) match this.Name.CompareTo(other.Name)
with | 0 -> this.Age.CompareTo(other.Age) | n ->
n (* Used for comparing this type against other
types *) interface IEquatable<string> with member
this.Equals(othername) = this.Name.Equals(othername)

Its just as easy to implement multiple interfaces in object
expressions as well.

Interface Hierarchies

Interfaces can extend other interfaces in a kind of inter-
face hierarchy. For example:
type ILifeForm = abstract member location : Sys-
tem.Drawing.Point type 'a IAnimal = (* interface with
generic type parameter *) inherit ILifeForm inherit
System.IComparable<'a> abstract member speak : unit

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785612
http://msdn.microsoft.com/en-us/library/bzw8611x.aspx
http://msdn.microsoft.com/en-us/library/6zzyats9.aspx

60 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

-> unit type IFeline = inherit IAnimal<IFeline> abstract
member purr : unit -> unit

When users create a concrete implementation of IFeline,
they are required to provide implementations for all of
the methods defined in the IAnimal, IComparable, and
ILifeForm interfaces.

Note: Interface hierarchies are occasionally
useful, however deep, complicated hierarchies
can be cumbersome to work with.

5.4.3 Examples

Generalizing a function to many classes

open System type ILifeForm = abstract Name : string
abstract Speak : unit -> unit abstract Eat : unit -> unit
type Dog(name : string, age : int) = member this.Age
= age interface ILifeForm with member this.Name =
name member this.Speak() = printfn “Woof!" mem-
ber this.Eat() = printfn “Yum, doggy biscuits!" type
Monkey(weight : float) = let mutable _weight = weight
member this.Weight with get() = _weight and set(value)
= _weight <- value interface ILifeForm with member
this.Name = “Monkey!!!" member this.Speak() = printfn
“Ook ook” member this.Eat() = printfn “Bananas!" type
Ninja() = interface ILifeForm with member this.Name
= “Ninjas have no name” member this.Speak() = printfn
“Ninjas are silent, deadly killers” member this.Eat() =
printfn “Ninjas don't eat, they wail on guitars because
they're totally sweet” let lifeforms = [(new Dog(“Fido”,
7) :> ILifeForm); (new Monkey(500.0) :> ILifeForm);
(new Ninja() :> ILifeForm)] let handleLifeForm (x :
ILifeForm) = printfn “Handling lifeform '%s’" x.Name
x.Speak() x.Eat() printfn "" let main() = printfn “Process-
ing...\n” lifeforms |> Seq.iter handleLifeForm printfn
“Done.” main()

This program has the following types:
type ILifeForm = interface abstract member Eat : unit
-> unit abstract member Speak : unit -> unit abstract
member Name : string end type Dog = class interface
ILifeForm new : name:string * age:int -> Dog member
Age : int end type Monkey = class interface ILifeForm
new : weight:float -> Monkey member Weight : float
member Weight : float with set end type Ninja = class
interface ILifeForm new : unit -> Ninja end val lifeforms
: ILifeForm list val handleLifeForm : ILifeForm -> unit
val main : unit -> unit

This program outputs the following:
Processing... Handling lifeform 'Fido' Woof! Yum,
doggy biscuits! Handling lifeform 'Monkey!!!' Ook ook
Bananas! Handling lifeform 'Ninjas have no name' Nin-

jas are silent, deadly killers Ninjas don't eat, they wail on
guitars because they're totally sweet Done.

Using interfaces in generic type definitions

We can constrain generic types in class and function defi-
nitions to particular interfaces. For example, let’s say that
we wanted to create a binary tree which satisfies the fol-
lowing property: each node in a binary tree has two chil-
dren, left and right, where all of the child nodes in left are
less than all of its parent nodes, and all of the child nodes
in right are greater than all of its parent nodes.
We can implement a binary tree with these properties
defining a binary tree which constrains our tree to the
IComparable<T> interface.

Note: .NET has a number of interfaces
defined in the BCL, including the very
important IComparable<T> interface.
IComparable exposes a single method,
objectInstance.CompareTo(otherInstance),
which should return 1, −1, or 0 when the ob-
jectInstance is greater than, less than, or equal
to otherInstance respectively. Many classes
in the .NET framework already implement
IComparable, including all of the numeric
data types, strings, and datetimes.

For example, using fsi:
> open System type tree<'a> when 'a :> ICompara-
ble<'a> = | Nil | Node of 'a * 'a tree * 'a tree let rec insert
(x : #IComparable<'a>) = function | Nil -> Node(x,
Nil, Nil) | Node(y, l, r) as node -> if x.CompareTo(y)
= 0 then node elif x.CompareTo(y) = −1 then Node(y,
insert x l, r) else Node(y, l, insert x r) let rec contains (x
: #IComparable<'a>) = function | Nil -> false | Node(y,
l, r) as node -> if x.CompareTo(y) = 0 then true elif
x.CompareTo(y) = −1 then contains x l else contains
x r;; type tree<'a> when 'a :> IComparable<'a>> = |
Nil | Node of 'a * tree<'a> * tree<'a> val insert : 'a ->
tree<'a> -> tree<'a> when 'a :> IComparable<'a> val
contains : #IComparable<'a> -> tree<'a> -> bool when
'a :> IComparable<'a> > let x = let rnd = new Random()
[for a in 1 .. 10 -> rnd.Next(1, 100)] |> Seq.fold (fun
acc x -> insert x acc) Nil;; val x : tree<int> > x;; val it :
tree<int> = Node (25,Node (20,Node (6,Nil,Nil),Nil),
Node (90, Node (86,Node (65,Node (50,Node (39,Node
(32,Nil,Nil),Nil),Nil),Nil),Nil), Nil)) > contains 39 x;;
val it : bool = true > contains 55 x;; val it : bool = false

Simple dependency injection

Dependency injection refers to the process of supplying
an external dependency to a software component. For
example, let’s say we had a class which, in the event of

http://msdn.microsoft.com/en-us/library/4d7sx9hd.aspx
http://msdn.microsoft.com/en-us/library/43hc6wht.aspx

5.5. EVENTS 61

an error, sends an email to the network administrator, we
might write some code like this:
type Processor() = (* ... *) member this.Process items
= try (* do stuff with items *) with | err -> (new
Emailer()).SendMsg(“admin@company.com”, “Error! "
+ err.Message)

The Process method creates an instance of Emailer, so we
can say that the Processor class depends on the Emailer
class.
Let’s say we're testing our Processor class, and we don't
want to be sending emails to the network admin all the
time. Rather than comment out the lines of code we don't
want to run while we test, its much easier to substitute
the Emailer dependency with a dummy class instead. We
can achieve that by passing in our dependency through the
constructor:
type IFailureNotifier = abstract Notify : string -> unit
type Processor(notifier : IFailureNotifier) = (* ... *)
member this.Process items = try // do stuff with items
with | err -> notifier.Notify(err.Message) (* concrete im-
plementations of IFailureNotifier *) type EmailNotifier()
= interface IFailureNotifier with member Notify(msg)
= (new Emailer()).SendMsg(“admin@company.com”,
“Error! " + msg) type DummyNotifier() = interface
IFailureNotifier with member Notify(msg) = () // swal-
low message type LogfileNotifier(filename : string) =
interface IFailureNotifer with member Notify(msg) =
System.IO.File.AppendAllText(filename, msg)

Now, we create a processor and pass in the kind of Fail-
ureNotifier we're interested in. In test environments,
we'd use new Processor(new DummyNotifier()); in pro-
duction, we'd use new Processor(new EmailNotifier()) or
new Processor(new LogfileNotifier(@"C:\log.txt”)).
To demonstrate dependency injection using a somewhat
contrived example, the following code in fsi shows how
to hot swap one interface implementation with another:
> #time;; --> Timing now on > type IAddStrategy =
abstract add : int -> int -> int type DefaultAdder() =
interface IAddStrategy with member this.add x y = x
+ y type SlowAdder() = interface IAddStrategy with
member this.add x y = let rec loop acc = function | 0
-> acc | n -> loop (acc + 1) (n - 1) loop x y type Off-
ByOneAdder() = interface IAddStrategy with member
this.add x y = x + y - 1 type SwappableAdder(adder :
IAddStrategy) = let mutable _adder = adder member
this.Adder with get() = _adder and set(value) = _adder
<- value member this.Add x y = this.Adder.add x y;;
type IAddStrategy = interface abstract member add : int
-> (int -> int) end type DefaultAdder = class interface
IAddStrategy new : unit -> DefaultAdder end type
SlowAdder = class interface IAddStrategy new : unit ->
SlowAdder end type OffByOneAdder = class interface
IAddStrategy new : unit -> OffByOneAdder end type

SwappableAdder = class new : adder:IAddStrategy
-> SwappableAdder member Add : x:int -> (int ->
int) member Adder : IAddStrategy member Adder :
IAddStrategy with set end Real: 00:00:00.000, CPU:
00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0 > let
myAdder = new SwappableAdder(new DefaultAdder());;
val myAdder : SwappableAdder Real: 00:00:00.000,
CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0 >
myAdder.Add 10 1000000000;; Real: 00:00:00.001,
CPU: 00:00:00.015, GC gen0: 0, gen1: 0, gen2: 0
val it : int = 1000000010 > myAdder.Adder <- new
SlowAdder();; Real: 00:00:00.000, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0 val it : unit = () >
myAdder.Add 10 1000000000;; Real: 00:00:01.085,
CPU: 00:00:01.078, GC gen0: 0, gen1: 0, gen2: 0 val it
: int = 1000000010 > myAdder.Adder <- new OffBy-
OneAdder();; Real: 00:00:00.000, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0 val it : unit = () >
myAdder.Add 10 1000000000;; Real: 00:00:00.000,
CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0 val it
: int = 1000000009

5.5 Events

Events allow objects to communicate with one another
through a kind of synchronous message passing. Events
are simply hooks to other functions: objects register call-
back functions to an event, and these callbacks will be
executed when (and if) the event is triggered by some ob-
ject.
For example, let’s say we have a clickable button which
exposed an event called Click. We can register a block of
code, something like fun () -> printfn “I've been clicked!",
to the button’s click event. When the click event is trig-
gered, it will execute the block of code we've registered.
If we wanted to, we could register an indefinite num-
ber of callback functions to the click event—the button
doesn't care what code is trigged by the callbacks or how
many callback functions are registered to its click event,
it blindly executes whatever functions are hooked to its
click event.
Event-driven programming is natural in GUI code, as
GUIs tend to consist of controls which react and respond
to user input. Events are, of course, useful in non-GUI
applications as well. For example, if we have an object
with mutable properties, we may want to notify another
object when those properties change.

5.5.1 Defining Events

Events are created and used though F#'s Event class. To
create an event, use the Event constructor as follows:
type Person(name : string) = let mutable _name =
name; let nameChanged = new Event<string>() member

http://msdn.microsoft.com/en-us/library/ee370608(VS.100).aspx

62 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

this.Name with get() = _name and set(value) = _name
<- value

To allow listeners to hook onto our event, we need to ex-
pose the nameChanged field as a public member using
the event’s Publish property:
type Person(name : string) = let mutable _name = name;
let nameChanged = new Event<unit>() (* creates event
*) member this.NameChanged = nameChanged.Publish
(* exposed event handler *) member this.Name
with get() = _name and set(value) = _name <- value
nameChanged.Trigger() (* invokes event handler *)

Now, any object can listen to the changes on the person
method. By convention and Microsoft’s recommenda-
tion, events are usually namedVerb orVerbPhrase, as well
as adding tenses like Verbed and Verbing to indicate post-
and pre-events.

5.5.2 Adding Callbacks to Event Handlers

Its very easy to add callbacks to event handlers. Each
event handler has the type IEvent<'T>which exposes sev-
eral methods:
val Add : event:('T -> unit) -> unit

Connect a listener function to the event. The
listener will be invoked when the event is fired.

val AddHandler : 'del -> unit

Connect a handler delegate object to the event.
A handler can be later removed using Remove-
Handler. The listener will be invoked when the
event is fired.

val RemoveHandler : 'del -> unit

Remove a listener delegate from an event lis-
tener store.

Here’s an example program:
type Person(name : string) = let mutable _name = name;
let nameChanged = new Event<unit>() (* creates event
*) member this.NameChanged = nameChanged.Publish
(* exposed event handler *) member this.Name
with get() = _name and set(value) = _name <- value
nameChanged.Trigger() (* invokes event handler *) let
p = new Person(“Bob”) p.NameChanged.Add(fun () ->
printfn "-- Name changed! New name: %s” p.Name)
printfn “Event handling is easy” p.Name <- “Joe” printfn
“It handily decouples objects from one another” p.Name
<- “Moe” p.NameChanged.Add(fun () -> printfn "--
Another handler attached to NameChanged!") printfn

“It’s also causes programs behave non-deterministically.”
p.Name <- “Bo” printfn “The function NameChanged is
invoked effortlessly.”

This program outputs the following:
Event handling is easy -- Name changed! New name: Joe
It handily decouples objects from one another -- Name
changed! New name: Moe It’s also causes programs
behave non-deterministically. -- Name changed! New
name: Bo -- Another handler attached to NameChanged!
The function NameChanged is invoked effortlessly.

Note: When multiple callbacks are connected
to a single event, they are executed in the or-
der they are added. However, in practice, you
should not write code with the expectation that
events will trigger in a particular order, as do-
ing so can introduce complex dependencies be-
tween functions. Event-driven programming
is often non-deterministic and fundamentally
stateful, which can occasionally be at odds with
the spirit of functional programming. Its best
to write callback functions which do not mod-
ify state, and do not depend on the invocation
of any prior events.

5.5.3 Working with EventHandlers Ex-
plicitly

Adding and Removing Event Handlers

The code above demonstrates how to use the
IEvent<'T>.add method. However, occasion-
ally we need to remove callbacks. To do so, we
need to work with the IEvent<'T>.AddHandler and
IEvent<'T>.RemoveHandler methods, as well as .NET’s
built-in System.Delegate type.
The function person.NameChanged.AddHandler has the
type val AddHandler : Handler<'T> -> unit, where Han-
dler<'T> inherits from System.Delegate. We can create
an instance of Handler as follows:
type Person(name : string) = let mutable _name = name;
let nameChanged = new Event<unit>() (* creates event
*) member this.NameChanged = nameChanged.Publish
(* exposed event handler *) member this.Name
with get() = _name and set(value) = _name <- value
nameChanged.Trigger() (* invokes event handler *) let
p = new Person(“Bob”) let person_NameChanged =
new Handler<unit>(fun sender eventargs -> printfn
"-- Name changed! New name: %s” p.Name)
p.NameChanged.AddHandler(person_NameChanged)
printfn “Event handling is easy” p.Name
<- “Joe” printfn “It handily decouples ob-
jects from one another” p.Name <- “Moe”
p.NameChanged.RemoveHandler(person_NameChanged)
p.NameChanged.Add(fun () -> printfn "-- Another han-

http://msdn.microsoft.com/en-us/library/ms229012.aspx
http://msdn.microsoft.com/en-us/library/ms229012.aspx
http://msdn.microsoft.com/en-us/library/system.delegate.aspx

5.5. EVENTS 63

dler attached to NameChanged!") printfn “It’s also
causes programs behave non-deterministically.” p.Name
<- “Bo” printfn “The function NameChanged is invoked
effortlessly.”

This program outputs the following:
Event handling is easy -- Name changed! New name: Joe
It handily decouples objects from one another -- Name
changed! New name: Moe It’s also causes programs be-
have non-deterministically. -- Another handler attached
to NameChanged! The function NameChanged is in-
voked effortlessly.

Defining New Delegate Types

F#'s event handling model is a little different from the
rest of .NET. If we want to expose F# events to different
languages like C# or VB.NET, we can define a custom
delegate type which compiles to a .NET delegate using
the delegate keyword, for example:
type NameChangingEventArgs(oldName : string, new-
Name : string) = inherit System.EventArgs() member
this.OldName = oldName member this.NewName =
newName type NameChangingDelegate = delegate of
obj * NameChangingEventArgs -> unit

The convention obj * NameChangingEventArgs corre-
sponds to the .NET naming guidelines which recommend
that all events have the type val eventName : (sender : obj
* e : #EventArgs) -> unit.

Use existing .NET WPF Event and Delegate Types

Try using existing .NET WPF Event and Delegate, ex-
ample, ClickEvent and RoutedEventHandler. Create F#
Windows Application .NET project with referring these
libraries (PresentationCore PresentationFramework Sys-
tem.Xaml WindowsBase). The program will display a
button in a window. Clicking the button will display the
button’s content as string.
open System.Windows open System.Windows.Controls
open System.Windows.Input open System [<Entry-
Point>] [<STAThread>] // STAThread is Single-
Threading-Apartment which is required by WPF let
main argv = let b = new Button(Content="Button”)
// b is a Button with “Button” as content let
f(sender:obj)(e:RoutedEventArgs) = // (#3) f is
a fun going to handle the Button.ClickEvent // f
signature must be curried, not tuple as govened
by Delegate-RoutedEventHandler. // that means
f(sender:obj,e:RoutedEventArgs) will not work. let
b = sender:?>Button // sender will have Button-
type. Convert it to Button into b. Message-
Box.Show(b.Content:?>string) // Retrieve the con-
tent of b which is obj. // Convert it to string and

display by <code>Messagebox.Show</code> |>
ignore // ignore the return because f-signature re-
quires: obj->RoutedEventArgs->unit let d = new
RoutedEventHandler(f) // (#2) d will have type-
RoutedEventHandler, // RoutedEventHandler is a kind
of delegate to handle Button.ClickEvent. // The f
must have signature governed by RoutedEventHandler.
b.AddHandler(Button.ClickEvent,d) // (#1) attach a
RountedEventHandler-d for Button.ClickEvent let w =
new Window(Visibility=Visibility.Visible,Content=b) //
create a window-w have a Button-b // which will show the
content of b when clicked (new Application()).Run(w) //
create new Application() running the Window-w.
(#1) To attach a handler to a control for an event:
b.AddHandler(Button.ClickEvent,d)
(#2) Create a delegate/handler using a function: let d =
new RoutedEventHandler(f)
(#3) Create a function with specific signature defined by
the delegate: let f(sender:obj)(e:RoutedEventArgs) =
b is the control.
AddHandler is attach.
Button.ClickEvent is the event.
d is delegate/handler. It is a layer to make sure the
signature is correct
f is the real function/program provided to the delegate.
Rule#1: b must have this event Button.ClickEvent: b
is type-Button-object. ClickEvent is a static property
of type-ButtonBase which is inherited by type-Button.
So Button-type will also have this static property Click-
Event.
Rule#2: d must be the handler of ClickEvent: Click-
Event is type-RoutedEvent. RoutedEvent’s handler is
RoutedEventHandler, just adding Handler at end. Rout-
edEventHandler is a defined delegate in .NET library.
To create d, just let d = new RoutedEventHandler(f),
where f is function.
Rule#3: f must have signature obeying delegate-d’s
definition: Check .NET library, RoutedEventHandler
is a delegate of C#-signature: void RoutedEven-
tHandler(object sender, RoutedEventArgs e). So f must
have same signature. Present the signature in F# is (obj
* RountedEventHandler) -> unit

5.5.4 Passing State To Callbacks

Events can pass state to callbacks with minimal effort.
Here is a simple program which reads a file in blocks of
characters:
open System type SuperFileReader() = let pro-
gressChanged = new Event<int>() member
this.ProgressChanged = progressChanged.Publish mem-
ber this.OpenFile (filename : string, charsPerBlock)
= use sr = new System.IO.StreamReader(filename) let
streamLength = int64 sr.BaseStream.Length let sb =
new System.Text.StringBuilder(int streamLength) let
charBuffer = Array.zeroCreate<char> charsPerBlock let

64 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

mutable oldProgress = 0 let mutable totalCharsRead = 0
progressChanged.Trigger(0) while not sr.EndOfStream
do (* sr.ReadBlock returns number of characters read
from stream *) let charsRead = sr.ReadBlock(charBuffer,
0, charBuffer.Length) totalCharsRead <- totalCharsRead
+ charsRead (* appending chars read from buffer *)
sb.Append(charBuffer, 0, charsRead) |> ignore let
newProgress = int(decimal totalCharsRead / decimal
streamLength * 100m) if newProgress > oldProgress
then progressChanged.Trigger(newProgress) // passes
newProgress as state to callbacks oldProgress <-
newProgress sb.ToString() let fileReader = new Su-
perFileReader() fileReader.ProgressChanged.Add(fun
percent -> printfn "%i percent done...” percent) let
x = fileReader.OpenFile(@"C:\Test.txt”, 50) printfn
"%s[...]" x.[0 .. if x.Length <= 100 then x.Length - 1
else 100]

This program has the following types:
type SuperFileReader = class new : unit -> Super-
FileReader member OpenFile : filename:string *
charsToRead:int -> string member ProgressChanged :
IEvent<int> end val fileReader : SuperFileReader val x :
string

Since our event has the type IEvent<int>, we can pass int
data as state to listening callbacks. This program outputs
the following:
0 percent done... 4 percent done... 9 percent done... 14
percent done... 19 percent done... 24 percent done... 29
percent done... 34 percent done... 39 percent done... 44
percent done... 49 percent done... 53 percent done... 58
percent done... 63 percent done... 68 percent done... 73
percent done... 78 percent done... 83 percent done... 88
percent done... 93 percent done... 98 percent done... 100
percent done... In computer programming, event-driven
programming or event-based programming is a program-
ming paradig[...]

5.5.5 Retrieving State from Callers

A common idiom in event-driven programming is pre-
and post-event handling, as well as the ability to cancel
events. Cancellation requires two-way communication
between an event handler and a listener, which we can
easily accomplish through the use of ref cells or mutable
members:
type Person(name : string) = let mutable _name =
name; let nameChanging = new Event<string * bool
ref>() let nameChanged = new Event<unit>() member
this.NameChanging = nameChanging.Publish member
this.NameChanged = nameChanged.Publish member
this.Name with get() = _name and set(value) = let
cancelChange = ref false nameChanging.Trigger(value,
cancelChange) if not !cancelChange then _name

<- value nameChanged.Trigger() let p = new Per-
son(“Bob”) p.NameChanging.Add(fun (name, cancel)
-> let exboyfriends = ["Steve"; “Mike"; “Jon"; “Seth"]
if List.exists (fun forbiddenName -> forbiddenName =
name) exboyfriends then printfn "-- No %s’s allowed!"
name cancel := true else printfn "-- Name allowed”)
p.NameChanged.Add(fun () -> printfn "-- Name changed
to %s” p.Name) let tryChangeName newName = printfn
“Attempting to change name to '%s’" newName p.Name
<- newName tryChangeName “Joe” tryChangeName
“Moe” tryChangeName “Jon” tryChangeName “Thor”

This program has the following types:
type Person = class new : name:string -> Person member
Name : string member NameChanged : IEvent<unit>
member NameChanging : IEvent<string * bool ref>
member Name : string with set end val p : Person val
tryChangeName : string -> unit

This program outputs the following:
Attempting to change name to 'Joe' -- Name allowed -
- Name changed to Joe Attempting to change name to
'Moe' -- Name allowed -- Name changed to Moe At-
tempting to change name to 'Jon' -- No Jon’s allowed!
Attempting to change name to 'Thor' -- Name allowed --
Name changed to Thor
If we need to pass a significant amount of state to listen-
ers, then its recommended to wrap the state in an object
as follows:
type NameChangingEventArgs(newName : string)
= inherit System.EventArgs() let mutable cancel =
false member this.NewName = newName mem-
ber this.Cancel with get() = cancel and set(value)
= cancel <- value type Person(name : string) = let
mutable _name = name; let nameChanging = new
Event<NameChangingEventArgs>() let nameChanged
= new Event<unit>() member this.NameChanging =
nameChanging.Publish member this.NameChanged
= nameChanged.Publish member this.Name with
get() = _name and set(value) = let eventArgs =
new NameChangingEventArgs(value) nameChang-
ing.Trigger(eventArgs) if not eventArgs.Cancel then
_name <- value nameChanged.Trigger() let p = new
Person(“Bob”) p.NameChanging.Add(fun e -> let
exboyfriends = ["Steve"; “Mike"; “Jon"; “Seth"] if
List.exists (fun forbiddenName -> forbiddenName =
e.NewName) exboyfriends then printfn "-- No %s’s
allowed!" e.NewName e.Cancel <- true else printfn "--
Name allowed”) (* ... rest of program ... *)

By convention, custom event parameters should inherit
from System.EventArgs, and should have the suffix Even-
tArgs.

https://en.wikibooks.org/wiki/F_Sharp_Programming/Mutable_Data#Ref_cells
http://msdn.microsoft.com/en-us/library/system.eventargs.aspx

5.5. EVENTS 65

5.5.6 Using the Event Module

F# allows users to pass event handlers around as first-class
values in fundamentally the same way as all other func-
tions. The Event module has a variety of functions for
working with event handlers:
val choose : ('T -> 'U option) -> IEvent<'del,'T> ->
IEvent<'U> (requires delegate and 'del :> Delegate)

Return a new event which fires on a selection
of messages from the original event. The se-
lection function takes an original message to an
optional new message.

val filter : ('T -> bool) -> IEvent<'del,'T> ->
IEvent<'T> (requires delegate and 'del :> Delegate)

Return a new event that listens to the original
event and triggers the resulting event only when
the argument to the event passes the given func-
tion.

val listen : ('T -> unit) -> IEvent<'del,'T> -> unit
(requires delegate and 'del :> Delegate)

Run the given function each time the given
event is triggered.

val map : ('T -> 'U) -> IEvent<'del,'T> ->
IEvent<'U> (requires delegate and 'del :> Delegate)

Return a new event which fires on a selection
of messages from the original event. The se-
lection function takes an original message to an
optional new message.

valmerge : IEvent<'del1,'T> -> IEvent<'del2,'T> ->
IEvent<'T> (requires delegate and 'del1 :> Delegate
and delegate and 'del2 :> Delegate)

Fire the output event when either of the input
events fire.

val pairwise : IEvent<'del,'T> -> IEvent<'T * 'T>
(requires delegate and 'del :> Delegate)

Return a new event that triggers on the second
and subsequent triggerings of the input event.
The Nth triggering of the input event passes
the arguments from the N-1th and Nth trigger-
ing as a pair. The argument passed to the N-
1th triggering is held in hidden internal state
until the Nth triggering occurs. You should
ensure that the contents of the values being
sent down the event are not mutable. Note
that many EventArgs types are mutable, e.g.

MouseEventArgs, and each firing of an event
using this argument type may reuse the same
physical argument obejct with different values.
In this case you should extract the necessary in-
formation from the argument before using this
combinator.

val partition : ('T -> bool) -> IEvent<'del,'T> ->
IEvent<'T> * IEvent<'T> (requires delegate and 'del
:> Delegate

Return a new event that listens to the original
event and triggers the first resulting event if the
application of the predicate to the event argu-
ments returned true, and the second event if it
returned false.

val scan : ('U -> 'T -> 'U) -> 'U -> IEvent<'del,'T> ->
IEvent<'U> (requires delegate and 'del :> Delegate)

Return a new event consisting of the results
of applying the given accumulating function to
successive values triggered on the input event.
An item of internal state records the current
value of the state parameter. The internal state
is not locked during the execution of the ac-
cumulation function, so care should be taken
that the input IEvent not triggered by multiple
threads simultaneously.

val split : ('T -> Choice<'U1,'U2>) ->
IEvent<'del,'T> -> IEvent<'U1> * IEvent<'U2>
(requires delegate and 'del :> Delegate)

Return a new event that listens to the original
event and triggers the first resulting event if the
application of the function to the event argu-
ments returned a Choice2Of1, and the second
event if it returns a Choice2Of2.

Take the following snippet:
p.NameChanging.Add(fun (e : NameChangingEven-
tArgs) -> let exboyfriends = ["Steve"; “Mike"; “Jon";
“Seth"] if List.exists (fun forbiddenName -> forbidden-
Name = e.NewName) exboyfriends then printfn "-- No
%s’s allowed!" e.NewName e.Cancel <- true)

We can rewrite this in a more functional style as follows:
p.NameChanging |> Event.filter (fun (e : NameChangin-
gEventArgs) -> let exboyfriends = ["Steve"; “Mike";
“Jon"; “Seth"] List.exists (fun forbiddenName -> forbid-
denName = e.NewName) exboyfriends) |> Event.listen
(fun e -> printfn "-- No %s’s allowed!" e.NewName
e.Cancel <- true)

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/FSharp.Core/Microsoft.FSharp.Control.Event.html

66 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

5.6 Modules and Namespaces

Modules and Namespaces are primarily used for group-
ing and organizing code.

5.6.1 Defining Modules

No code is required to define a module. If a codefile does
not contain a leading namespace or module declaration,
F# code will implicitly place the code in a module, where
the name of the module is the same as the file name with
the first letter capitalized.
To access code in another module, simply use . notation:
moduleName.member. Notice that this notation is sim-
ilar to the syntax used to access static members—this is
not a coincidence. F# modules are compiled as classes
which only contain static members, values, and type def-
initions.
Let’s create two files:
DataStructures.fs
type 'a Stack = | EmptyStack | StackNode of 'a * 'a Stack
let rec getRange startNum endNum = if startNum >
endNum then EmptyStack else StackNode(startNum,
getRange (startNum+1) endNum)

Program.fs
let x = DataStructures.StackNode(1, DataStruc-
tures.StackNode(2, DataStructures.StackNode(3,
DataStructures.EmptyStack))) let y = DataStruc-
tures.getRange 5 10 printfn "%A” x printfn "%A” y

This program outputs:
StackNode (1,StackNode (2,StackNode (3,Emp-
tyStack))) StackNode (5, StackNode (6,StackNode
(7,StackNode (8,StackNode (9,StackNode (10,EmptyS-
tack))))))

Note: Remember, order of compilation mat-
ters in F#. Dependencies must come before
dependents, so DataStructures.fs comes before
Program.fs when compiling this program.

Like all modules, we can use the open keyword to give
us access to the methods inside a module without fully
qualifying the naming of the method. This allows us to
revise Program.fs as follows:
open DataStructures let x = StackNode(1, StackNode(2,
StackNode(3, EmptyStack))) let y = getRange 5 10
printfn "%A” x printfn "%A” y

Submodules

Its very easy to create submodules using the module key-
word:
(* DataStructures.fs *) type 'a Stack = | EmptyStack |
StackNode of 'a * 'a Stack module StackOps = let rec
getRange startNum endNum = if startNum > endNum
then EmptyStack else StackNode(startNum, getRange
(startNum+1) endNum)

Since the getRange method is under another module,
the fully qualified name of this method is DataStruc-
tures.StackOps.getRange. We can use it as follows:
(* Program.fs *) open DataStructures let x = StackN-
ode(1, StackNode(2, StackNode(3, EmptyStack))) let y
= StackOps.getRange 5 10 printfn "%A” x printfn "%A”
y

F# allows us to create a module and a type having the
same name, for example the following code is perfectly
acceptable:
type 'a Stack = | EmptyStack | StackNode of 'a * 'a Stack
module Stack = let rec getRange startNum endNum =
if startNum > endNum then EmptyStack else StackN-
ode(startNum, getRange (startNum+1) endNum)

Note: Its possible to nest submodules inside
other submodules. However, as a general prin-
ciple, its best to avoid creating complexmodule
hierarchies. Functional programming libraries
tend to be very “flat” with nearly all function-
ality accessible in the first 2 or 3 levels of a
hierarchy. This is in contrast to many other
OO languages which encourage programmers
to create deeply nested class libraries, where
functionality might be buried 8 or 10 levels
down the hierarchy.

Extending Types and Modules

F# supports extension methods, which allow program-
mers to add new static and instance methods to classes
and modules without inheriting from them.
Extending a Module
The Seq module contains several pairs of methods:

• iter/iteri

• map/mapi

Seq has a forall member, but does not have a correspond-
ing foralli function, which includes the index of each
sequence element. We add this missing method to the

https://en.wikibooks.org/wiki/F_Sharp_Programming/Classes#Instance_and_Static_Members
https://en.wikibooks.org/wiki/F_Sharp_Programming/Sequences#The_Seq_Module

5.6. MODULES AND NAMESPACES 67

module simply by creating another module with the same
name. For example, using fsi:
> module Seq = let foralli f s = s |> Seq.mapi (fun i x ->
i, x) (* pair item with its index *) |> Seq.forall (fun (i, x)
-> f i x) (* apply item and index to function *) let isPalin-
drome (input : string) = input |> Seq.take (input.Length
/ 2) |> Seq.foralli (fun i x -> x = input.[input.Length -
i - 1]);; module Seq = begin val foralli : (int -> 'a ->
bool) -> seq<'a> -> bool end val isPalindrome : string
-> bool > isPalindrome “hello";; val it : bool = false >
isPalindrome “racecar";; val it : bool = true

Extending a Type
The System.String has many useful methods, but let’s say
we thought it was missing a few important functions, Re-
verse and IsPalindrome. Since this class is marked as
sealed or NotInheritable, we can't create a derived ver-
sion of this class. Instead, we create a module with the
new methods we want. Here’s an example in fsi which
demonstrates how to add new static and instance meth-
ods to the String class:
> module Seq = let foralli f s = s |> Seq.mapi (fun i x ->
i, x) (* pair item with its index *) |> Seq.forall (fun (i, x)
-> f i x) (* apply item and index to function *) module
StringExtensions = type System.String with member
this.IsPalindrome = this |> Seq.take (this.Length / 2) |>
Seq.foralli (fun i x -> this.[this.Length - i - 1] = x) static
member Reverse(s : string) = let chars : char array =
let temp = Array.zeroCreate s.Length let charsToTake
= if temp.Length % 2 <> 0 then (temp.Length + 1)
/ 2 else temp.Length / 2 s |> Seq.take charsToTake
|> Seq.iteri (fun i x -> temp.[i] <- s.[temp.Length
- i - 1] temp.[temp.Length - i - 1] <- x) temp new
System.String(chars) open StringExtensions;; module
Seq = begin val foralli : (int -> 'a -> bool) -> seq<'a>
-> bool end module StringExtensions = begin end >
“hello world”.IsPalindrome;; val it : bool = false > Sys-
tem.String.Reverse(“hello world”);; val it : System.String
= “dlrow olleh”

Module Signatures

By default, all members in a module are accessible from
outside the module. However, a module often contain
members which should not be accessible outside itself,
such as helper functions. One way to expose only a sub-
set of a module’s members is by creating a signature file
for that module. (Another way is to apply .Net CLR ac-
cess modifiers of public, internal, or private to individual
declarations).
Signature files have the same name as their correspond-
ing module, but end with a ".fsi” extension (f-sharp inter-
face). Signature files always come before their implemen-
tation files, which have a corresponding ".fs” extension.

For example:
DataStructures.fsi
type 'a stack = | EmptyStack | StackNode of 'a * 'a stack
module Stack = val getRange : int -> int -> int stack val
hd : 'a stack -> 'a val tl : 'a stack -> 'a stack val fold : ('a
-> 'b -> 'a) -> 'a -> 'b stack -> 'a val reduce : ('a -> 'a ->
'a) -> 'a stack -> 'a

DataStructures.fs
type 'a stack = | EmptyStack | StackNode of 'a * 'a
stack module Stack = (* helper functions *) let in-
ternal_head_tail = function | EmptyStack -> failwith
“Empty stack” | StackNode(hd, tail) -> hd, tail let rec
internal_fold_left f acc = function | EmptyStack -> acc
| StackNode(hd, tail) -> internal_fold_left f (f acc hd)
tail (* public functions *) let rec getRange startNum
endNum = if startNum > endNum then EmptyStack
else StackNode(startNum, getRange (startNum+1)
endNum) let hd s = internal_head_tail s |> fst let tl
s = internal_head_tail s |> snd let fold f seed stack
= internal_fold_left f seed stack let reduce f stack =
internal_fold_left f (hd stack) (tl stack)

Program.fs
open DataStructures let x = Stack.getRange 1 10 printfn
"%A” (Stack.hd x) printfn "%A” (Stack.tl x) printfn
"%A” (Stack.fold (*) 1 x) printfn "%A” (Stack.reduce
(+) x) (* printfn "%A” (Stack.internal_head_tail x) *)
(* will not compile *)

Since Stack.internal_head_tail is not defined in our in-
terface file, the method is marked private and no longer
accessible outside of the DataStructures module.
Module signatures are useful to building a code library’s
skeleton, however they have a few caveats. If you want
to expose a class, record, or union in a module through
a signature, then the signature file must expose all of the
objects members, records fields, and union’s cases. Addi-
tionally, the signature of the function defined in the mod-
ule and it’s corresponding signature in the signature file
must match exactly. Unlike OCaml, F# does not allow a
function in a module with the generic type 'a -> 'a -> 'a to
be restricted to int -> int -> int in the signature file.

5.6.2 Defining Namespaces

A namespace is a hierarchial catergorization of mod-
ules, classes, and other namespaces. For example, the
System.Collections namespace groups together all of the
collections and data structures in the .NET BCL, whereas
the System.Security.Cryptography namespace groups to-
gether all classes which provide cryptographic services.
Namespaces are primarily used to avoid name conflicts.
For example, let’s say we were writing an application in-

http://msdn.microsoft.com/en-us/library/system.string.aspx
http://msdn.microsoft.com/en-us/library/system.collections.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.aspx

68 CHAPTER 5. OBJECT ORIENTED PROGRAMMING

corporated code from several different vendors. If Ven-
dor A and Vendor B both have a class called Collec-
tions.Stack, and we wrote the code let s = new Stack(),
how would the compiler know whether which stack we
intended to create? Namespaces can eliminate this am-
biguity by adding one more layer of grouping to our code.
Code is grouped under a namespace using the namespace
keyword:
DataStructures.fsi
namespace Princess.Collections type 'a stack = | Emp-
tyStack | StackNode of 'a * 'a stack module Stack = val
getRange : int -> int -> int stack val hd : 'a stack -> 'a
val tl : 'a stack -> 'a stack val fold : ('a -> 'b -> 'a) -> 'a
-> 'b stack -> 'a val reduce : ('a -> 'a -> 'a) -> 'a stack -> 'a

DataStructures.fs
namespace Princess.Collections type 'a stack = | Emp-
tyStack | StackNode of 'a * 'a stack module Stack = (*
helper functions *) let internal_head_tail = function |
EmptyStack -> failwith “Empty stack” | StackNode(hd,
tail) -> hd, tail let rec internal_fold_left f acc = function
| EmptyStack -> acc | StackNode(hd, tail) -> inter-
nal_fold_left f (f acc hd) tail (* public functions *) let rec
getRange startNum endNum = if startNum > endNum
then EmptyStack else StackNode(startNum, getRange
(startNum+1) endNum) let hd s = internal_head_tail s
|> fst let tl s = internal_head_tail s |> snd let fold f seed
stack = internal_fold_left f seed stack let reduce f stack
= internal_fold_left f (hd stack) (tl stack)

Program.fs
open Princess.Collections let x = Stack.getRange 1
10 printfn "%A” (Stack.hd x) printfn "%A” (Stack.tl
x) printfn "%A” (Stack.fold (*) 1 x) printfn "%A”
(Stack.reduce (+) x)

Where is the DataStructures Module?
You may have expected the code in Program.fs above
to open Princess.Collections.DataStructures rather than
Princess.Collections. According to the F# spec, F# treats
anonymous implementation files (which are files without a
leading module or namespace declaration) by putting all
code in an implicit module which matches the code’s file-
name. Since we have a leading namespace declaration,
F# does not create the implicit module.
.NET does not permit users to create functions or values
outside of classes or modules. As a consequence, we can-
not write the following code:
namespace Princess.Collections type 'a stack = | Emp-
tyStack | StackNode of 'a * 'a stack let somefunction() =
12 (* <--- functions not allowed outside modules *) (* ...
*)

If we prefer to have a module called DataStructures, we
can write this:
namespace Princess.Collections module DataStructures
type 'a stack = | EmptyStack | StackNode of 'a * 'a stack
let somefunction() = 12 (* ... *)

Or equivalently, we define a module and place it a names-
pace simultaneously using:
module Princess.Collections.DataStructures type 'a
stack = | EmptyStack | StackNode of 'a * 'a stack let
somefunction() = 12 (* ... *)

Adding to Namespace from Multiple Files

Unlike modules and classes, any file can contribute to a
namespace. For example:
DataStructures.fs
namespace Princess.Collections type 'a stack = | Emp-
tyStack | StackNode of 'a * 'a stack module Stack = (*
helper functions *) let internal_head_tail = function |
EmptyStack -> failwith “Empty stack” | StackNode(hd,
tail) -> hd, tail let rec internal_fold_left f acc = function
| EmptyStack -> acc | StackNode(hd, tail) -> inter-
nal_fold_left f (f acc hd) tail (* public functions *) let rec
getRange startNum endNum = if startNum > endNum
then EmptyStack else StackNode(startNum, getRange
(startNum+1) endNum) let hd s = internal_head_tail s
|> fst let tl s = internal_head_tail s |> snd let fold f seed
stack = internal_fold_left f seed stack let reduce f stack
= internal_fold_left f (hd stack) (tl stack)

MoreDataStructures.fs
namespace Princess.Collections type 'a tree when 'a :>
System.IComparable<'a> = | EmptyTree | TreeNode of
'a * 'a tree * 'a tree module Tree = let rec insert (x :
#System.IComparable<'a>) = function | EmptyTree ->
TreeNode(x, EmptyTree, EmptyTree) | TreeNode(y, l,
r) as node -> match x.CompareTo(y) with | 0 -> node | 1
-> TreeNode(y, l, insert x r) | −1 -> TreeNode(y, insert
x l, r) | _ -> failwith “CompareTo returned illegal value”

Since we have a leading namespace declaration in both
files, F# does not create any implicit modules. The 'a
stack, 'a tree, Stack, and Tree types are all accessible
through the Princess.Collections namespace:
Program.fs
open Princess.Collections let x = Stack.getRange 1 10 let
y = let rnd = new System.Random() [for a in 1 .. 10 ->
rnd.Next(0, 100)] |> Seq.fold (fun acc x -> Tree.insert
x acc) EmptyTree printfn "%A” (Stack.hd x) printfn
"%A” (Stack.tl x) printfn "%A” (Stack.fold (*) 1 x)
printfn "%A” (Stack.reduce (+) x) printfn "%A” y

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785747

5.6. MODULES AND NAMESPACES 69

Controlling Class and Module Accessibility

Unlike modules, there is no equivalent to a signature file
for namespaces. Instead, the visibility of classes and sub-
modules is controlled through standard accessibility mod-
ifiers:
namespace Princess.Collections type 'a tree when 'a :>
System.IComparable<'a> = | EmptyTree | TreeNode of
'a * 'a tree * 'a tree (* InvisibleModule is only accessible
by classes or modules inside the Princess.Collections
namespace*) module private InvisibleModule = let msg
= “I'm invisible!" module Tree = (* InvisibleClass is only
accessible by methods inside the Tree module *) type
private InvisibleClass() = member x.Msg() = “I'm invis-
ible too!" let rec insert (x : #System.IComparable<'a>)
= function | EmptyTree -> TreeNode(x, EmptyTree,
EmptyTree) | TreeNode(y, l, r) as node -> match
x.CompareTo(y) with | 0 -> node | 1 -> TreeNode(y,
l, insert x r) | −1 -> TreeNode(y, insert x l, r) | _ ->
failwith “CompareTo returned illegal value”

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785709
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785709

Chapter 6

F# Advanced

6.1 Units of Measure

Units of measure allow programmers to annotate floats
and integers with statically-typed unit metadata. This can
be handy when writing programs which manipulate floats
and integers representing specific units of measure, such
as kilograms, pounds, meters, newtons, pascals, etc. F#
will verify that units are used in places where the pro-
grammer intended. For example, the F# compiler will
throw an error if a float<m/s> is used where it expects a
float<kg>.

6.1.1 Use Cases

Statically Checked Type Conversions

Units of measure are invaluable to programmers who
work in scientific research, they add an extra layer of
protection to guard against conversion related errors. To
cite a famous case study, NASA’s $125 million Mars Cli-
mate Orbiter project ended in failure when the orbiter
dipped 90 km closer to Mars than originally intended,
causing it to tear apart and disintegrate spectacularly in
the Mars atmosphere. A post mortem analysis narrowed
down the root cause of the problem to a conversion er-
ror in the orbiter’s propulsion systems used to lower the
spacecraft into orbit: NASA passed data to the systems in
metric units, but the software expected data in Imperial
units. Although there were many contributing project-
management errors which resulted in the failed mission,
this software bug in particular could have been prevented
if the software engineers had used a type-system power-
ful enough to detect unit-related errors.

Decorating Data With Contextual Information

In an article Making Code Look Wrong, Joel Spolsky
describes a scenario in which, during the design of Mi-
crosoft Word and Excel, programmers at Microsoft were
required to track the position of objects on a page using
two non-interchangeable coordinate systems:

In WYSIWYG word processing, you have
scrollable windows, so every coordinate has to

be interpreted as either relative to the window
or relative to the page, and that makes a big
difference, and keeping them straight is pretty
important. [...]

The compiler won’t help you if you assign one
to the other and Intellisense won’t tell you bup-
kis. But they are semantically different; they
need to be interpreted differently and treated
differently and some kind of conversion func-
tion will need to be called if you assign one to
the other or you will have a runtime bug. If
you’re lucky. [...]

In Excel’s source code you see a lot of rw and
col and when you see those you know that they
refer to rows and columns. Yep, they’re both
integers, but it never makes sense to assign
between them. In Word, I'm told, you see a
lot of xl and xw, where xl means “horizon-
tal coordinates relative to the layout” and xw
means “horizontal coordinates relative to the
window.” Both ints. Not interchangeable. In
both apps you see a lot of cb meaning “count
of bytes.” Yep, it’s an int again, but you know
so much more about it just by looking at the
variable name. It’s a count of bytes: a buffer
size. And if you see xl = cb, well, blow the Bad
Code Whistle, that is obviously wrong code,
because even though xl and cb are both inte-
gers, it’s completely crazy to set a horizontal
offset in pixels to a count of bytes.

In short, Microsoft depends on coding conventions to en-
code contextual data about a variable, and they depend on
code reviews to enforce correct usage of a variable from
its context. This works in practice, but its still possible
for incorrect code to work its way it the product without
the bug being detected for months.
If Microsoft were using a language with units of measure,
they could have defined their own rw, col, xw, xl, and cb
units ofmeasure so that an assignment of the form int<xl>
= int<cb> not only fails visual inspection, it doesn't even
compile.

70

http://mars.jpl.nasa.gov/msp98/news/mco991110.html
http://mars.jpl.nasa.gov/msp98/news/mco991110.html
http://www.joelonsoftware.com/articles/Wrong.html

6.1. UNITS OF MEASURE 71

6.1.2 Defining Units

New units of measure are defined using the Measure at-
tribute:
[<Measure>] type m (* meter *) [<Measure>] type s (*
second *)

Additionally, we can define types measures which are de-
rived from existing measures as well:
[<Measure>] type m (* meter *) [<Measure>] type
s (* second *) [<Measure>] type kg (* kilogram *)
[<Measure>] type N = (kg * m)/(s^2) (* Newtons *)
[<Measure>] type Pa = N/(m^2) (* Pascals *)

Important: Units of measure look like a data
type, but they aren't. .NET’s type system does
not support the behaviors that units of measure
have, such as being able to square, divide, or
raise datatypes to powers. This functionality is
provided by the F# static type checker at com-
pile time, but units are erased from compiled
code. Consequently, it is not possible to deter-
mine value’s unit at runtime.

We can create instances of float and integer data which
represent these units using the same notation we use with
generics:
> let distance = 100.0<m> let time = 5.0<s> let speed =
distance / time;; val distance : float<m> = 100.0 val time
: float<s> = 5.0 val speed : float<m/s> = 20.0

Notice the that F# automatically derives a new unit, m/s,
for the value speed. Units of measure will multiply, di-
vide, and cancel as needed depending on how they are
used. Using these properties, it’s very easy to convert be-
tween two units:
[<Measure>] type C [<Measure>] type F let
to_fahrenheit (x : float<C>) = x * (9.0<F>/5.0<C>) +
32.0<F> let to_celsius (x : float<F>) = (x - 32.0<F>) *
(5.0<C>/9.0<F>)

Units of measure are statically checked at compile time
for proper usage. For example, if we use a measure where
it isn't expected, we get a compilation error:
> [<Measure>] type m [<Measure>] type s let speed (x
: float<m>) (y : float<s>) = x / y;; [<Measure>] type
m [<Measure>] type s val speed : float<m> -> float<s>
-> float<m/s> > speed 20.0<m> 4.0<s>;; (* should get
a speed *) val it : float<m/s> = 5.0 > speed 20.0<m>
4.0<m>;; (* boom! *) speed 20.0<m> 4.0<m>;; ---------
-----^^^^^^ stdin(39,15): error FS0001: Type mismatch.
Expecting a float<s> but given a float<m>. The unit of
measure 's’ does not match the unit of measure 'm'

Units can be defined for integral types too:
> [<Measure>] type col [<Measure>] type row let
colOffset (a : int<col>) (b : int<col>) = a - b let rowOff-
set (a : int<row>) (b : int<row>) = a - b;; [<Measure>]
type col [<Measure>] type row val colOffset : int<col>
-> int<col> -> int<col> val rowOffset : int<row> ->
int<row> -> int<row>

6.1.3 Dimensionless Values

A value without a unit is dimensionless. Dimension-
less values are represented implicitly by writing them
out without units (i.e. 7.0, −14, 200.5), or they can be
represented explicitly using the <1> type (i.e. 7.0<1>,
−14<1>, 200.5<1>).
We can convert dimensionless units to a specific measure
by multiplying by 1<targetMeasure>. We can convert a
measure back to a dimensionless unit by passing it to the
built-in float or int methods:
[<Measure>] type m (* val to_meters : (x : float<'u>)
-> float<'u m> *) let to_meters x = x * 1<m> (* val
of_meters : (x : float<m>) -> float *) let of_meters (x :
float<m>) = float x

Alternatively, its often easier (and safer) to divide away
unneeded units:
let of_meters (x : float<m>) = x / 1.0<m>

6.1.4 Generalizing Units of Measure

Since measures and dimensionless values are (or appear
to be) generic types, we can write functions which operate
on both transparently:
> [<Measure>] type m [<Measure>] type kg let vanil-
laFloats = [10.0; 15.5; 17.0] let lengths = [for a in [2.0;
7.0; 14.0; 5.0] -> a * 1.0<m>] let masses = [for a in
[155.54; 179.01; 135.90] -> a * 1.0<kg>] let densities =
[for a in [0.54; 1.0; 1.1; 0.25; 0.7] -> a * 1.0<kg/m^3>
] let average (l : float<'u> list) = let sum, count = l |>
List.fold (fun (sum, count) x -> sum + x, count + 1.0<_>)
(0.0<_>, 0.0<_>) sum / count;; [<Measure>] type m
[<Measure>] type kg val vanillaFloats : float list =
[10.0; 15.5; 17.0] val lengths : float<m> list = [2.0; 7.0;
14.0; 5.0] val masses : float<kg> list = [155.54; 179.01;
135.9] val densities : float<kg/m ^ 3> list = [0.54; 1.0;
1.1; 0.25; 0.7] val average : float<'u> list -> float<'u> >
average vanillaFloats, average lengths, average masses,
average densities;; val it : float * float<m> * float<kg>
* float<kg/m ^ 3> = (14.16666667, 7.0, 156.8166667,
0.718)

Since units are erased from compiled code, they are not

72 CHAPTER 6. F# ADVANCED

considered a real data type, so they can't be used directly
as a type parameter in generic functions and classes. For
example, the following code will not compile:
> type triple<'a> = { a : float<'a>; b : float<'a>; c :
float<'a>};; type triple<'a> = { a : float<'a>; b : float<'a>;
c : float<'a>};; ------------------------------^^ stdin(40,31):
error FS0191: Expected unit-of-measure parameter, not
type parameter. Explicit unit-of-measure parameters
must be marked with the [<Measure>] attribute

F# does not infer that 'a is a unit of measure above, possi-
bly because the following code appears correct, but it can
be used in non-sensical ways:
type quad<'a> = { a : float<'a>; b : float<'a>; c :
float<'a>; d : 'a}

The type 'a can be a unit of measure or a data type, but
not both at the same time. F#'s type checker assumes 'a is
a type parameter unless otherwise specified. We can use
the [<Measure>] attribute to change the 'a to a unit of
measure:
> type triple<[<Measure>] 'a> = { a : float<'a>; b :
float<'a>; c : float<'a>};; type triple<[<Measure>] 'a> =
{a: float<'a>; b: float<'a>; c: float<'a>;} > { a = 7.0<kg>;
b = −10.5<_>; c = 0.5<_> };; val it : triple<kg> = {a =
7.0; b = −10.5; c = 0.5;}

6.1.5 F# PowerPack

The F# PowerPack (FSharp.PowerPack.dll) includes a
number of predefined units of measure for scientific ap-
plications. These are available in the following modules:

• Microsoft.FSharp.Math.SI - a variety of predefined
measures in the International System of Units (SI).

• Microsoft.FSharp.Math.PhysicalConstants - Funda-
mental physical constants with units of measure.

6.1.6 External Resources

• Andrew Kennedy’s 4-part tutorial on units of mea-
sure:

• Part 1: Introducing Units

• Part 2: Unit Conversions

• Part 3: Generic Units

• Part 4: Parameterized Types

• F# Units of Measure (MSDN)

6.2 Caching

Caching is often useful to re-use data which has already
been computed. F# provides a number of built-in tech-
niques to cache data for future use.

6.2.1 Partial Functions

F# automatically caches the value of any function which
takes no parameters. When F# comes across a function
with no parameters, F# will only evaluate the function
once and reuse its value everytime the function is ac-
cessed. Compare the following:
let isNebraskaCity_bad city = let cities = printfn “Cre-
ating cities Set” ["Bellevue"; “Omaha"; “Lincoln";
“Papillion"] |> Set.ofList cities.Contains(city) let isNe-
braskaCity_good = let cities = printfn “Creating cities
Set” ["Bellevue"; “Omaha"; “Lincoln"; “Papillion"] |>
Set.ofList fun city -> cities.Contains(city)

Both functions accept and return the same values, but they
have very different behavior. Here’s a comparison of the
output in fsi:
The implementation of isNebraskaCity_bad forces F# to
re-create the internal set on each call. On the other hand,
isNebraskaCity_good is a value initialized to the function
fun city -> cities.Contains(city), so it creates its internal
set once and reuses it for all successive calls.

Note: Internally, isNebraskaCity_bad is com-
piled as a static function which constructs a set
on every call. isNebraskaCity_good is com-
piled as a static readonly property, where the
value is initialized in a static constructor.

This distinction is often subtle, but it can have a huge im-
pact on an application’s performance.

6.2.2 Memoization

“Memoization” is a fancy word meaning that computed
values are stored in a lookup table rather than recom-
puted on every successive call. Long-running pure func-
tions (i.e. functions which have no side-effects) are good
candidates for memoization. Consider the recursive def-
inition for computing Fibonacci numbers:
> #time;; --> Timing now on > let rec fib n = if n = 0I
then 0I elif n = 1I then 1I else fib (n - 1I) + fib(n - 2I);;
Real: 00:00:00.000, CPU: 00:00:00.000, GC gen0: 0,
gen1: 0, gen2: 0 val fib : Math.bigint -> Math.bigint > fib
35I;; Real: 00:00:23.557, CPU: 00:00:23.515, GC gen0:
2877, gen1: 3, gen2: 0 val it : Math.bigint = 9227465I

Beyond fib 35I, the runtime of the function becomes un-
bearable. Each recursive call to the fib function throws

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/fsharp.powerpack/Microsoft.FSharp.Math.SI.html
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/fsharp.powerpack/Microsoft.FSharp.Math.PhysicalConstants.html
http://blogs.msdn.com/andrewkennedy/archive/2008/08/29/units-of-measure-in-f-part-one-introducing-units.aspx
http://blogs.msdn.com/andrewkennedy/archive/2008/09/02/units-of-measure-in-f-part-two-unit-conversions.aspx
http://blogs.msdn.com/andrewkennedy/archive/2008/09/04/units-of-measure-in-f-part-three-generic-units.aspx
http://blogs.msdn.com/andrewkennedy/archive/2009/06/09/units-of-measure-in-f_2300_-part-four-parameterized-types.aspx
http://msdn.microsoft.com/en-us/library/dd233243(VS.100).aspx

6.3. ACTIVE PATTERNS 73

away all of its intermediate calculations to fib(n - 1I)
and fib(n - 2I), giving it a runtime complexity of about
O(2^n). What if we kept all of those intermediate calcu-
lations around in a lookup table? Here’s the memoized
version of the fib function:
> #time;; --> Timing now on > let rec fib = let dict =
new System.Collections.Generic.Dictionary<_,_>() fun
n -> match dict.TryGetValue(n) with | true, v -> v |
false, _ -> let temp = if n = 0I then 0I elif n = 1I then
1I else fib (n - 1I) + fib(n - 2I) dict.Add(n, temp) temp;;
val fib : (Math.bigint -> Math.bigint) > fib 35I;; Real:
00:00:00.000, CPU: 00:00:00.000, GC gen0: 0, gen1:
0, gen2: 0 val it : Math.bigint = 9227465I

Much better! This version of the fib function runs almost
instaneously. In fact, since we only calculate the value of
any fib(n) precisely once, and dictionary lookups are an
O(1) operation, this fib function runs in O(n) time.
Notice all of the memoization logic is contained in the
fib function. We can write a more general function to
memoize any function:
let memoize f = let dict = new Sys-
tem.Collections.Generic.Dictionary<_,_>() fun n ->
match dict.TryGetValue(n) with | (true, v) -> v | _ ->
let temp = f(n) dict.Add(n, temp) temp let rec fib =
memoize(fun n -> if n = 0I then 0I elif n = 1I then 1I
else fib (n - 1I) + fib (n - 2I))

Note: Its very important to remember that
the implementation above is not thread-safe
-- the dictionary should be locked before
adding/retrieving items if it will be accessed by
multiple threads.

Additionally, although dictionary lookups oc-
cur in constant time, the hash function used
by the dictionary can take an arbitrarily long
time to execute (this is especially true with
strings, where the time it takes to hash a string
is proportional to its length). For this rea-
son, it is wholly possible for a memoized func-
tion to have less performance than an unmem-
oized function. Always profile code to deter-
mine whether optimization is necessary and
whether memoization genuinely improves per-
formance.

6.2.3 Lazy Values

The F# lazy data type is an interesting primitive which
delays evaluation of a value until the value is actually
needed. Once computed, lazy values are cached for reuse
later:
> let x = lazy(printfn “I'm lazy"; 5 + 5);; val x : Lazy<int>
= <unevaluated> > x.Force();; (* Should print “I'm lazy”

) I'm lazy val it : int = 10 > x.Force();; (Value already
computed, should not print “I'm lazy” again *) val it : int
= 10

F# uses some compiler magic to avoid evaluating the ex-
pression (printfn “I'm lazy"; 5 + 5) on declaration. Lazy
values are probably the simplest form of caching, how-
ever they can be used to create some interesting and so-
phisticated data structures. For example, two F# data
structures are implemented on top of lazy values, namely
the F# Lazy List and Seq.cache method.
Lazy lists and cached sequences represent arbitrary se-
quences of potentially infinite numbers of elements. The
elements are computed and cached the first time they are
accessed, but will not be recomputed when the sequence
is enumerated again. Here’s a demonstration in fsi:
> let x = seq { for a in 1 .. 10 -> printfn “Got %i” a; a }
|> Seq.cache;; val x : seq<int> > let y = Seq.take 5 x;; val
y : seq<int> > Seq.reduce (+) y;; Got 1 Got 2 Got 3 Got
4 Got 5 val it : int = 15 > Seq.reduce (+) y;; (* Should
not recompute values *) val it : int = 15 > Seq.reduce
(+) x;; (* Values 1 through 5 already computed, should
only compute 6 through 10 *) Got 6 Got 7 Got 8 Got 9
Got 10 val it : int = 55

6.3 Active Patterns

Active Patterns allow programmers to wrap arbitrary val-
ues in a union-like data structure for easy pattern match-
ing. For example, its possible wrap objects with an active
pattern, so that you can use objects in pattern matching
as easily as any other union type.

6.3.1 Defining Active Patterns

Active patterns look like functions with a funny name:
let (|name1|name2|...|) = ...

This function defines an ad hoc union data structure,
where each union case namen is separated from the next
by a | and the entire list is enclosed between (| and |)
(humbly called “banana brackets”). In other words, the
function does not have a simple name at all, it instead de-
fines a series of union constructors.
A typical active pattern might look like this:
let (|Even|Odd|) n = if n % 2 = 0 then Even else Odd

Even and Odd are union constructors, so our active pat-
tern either returns an instance of Even or an instance of
Odd. The code above is roughly equivalent to the follow-
ing:

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/fsharp.powerpack/microsoft.fsharp.collections.lazylist.html
https://en.wikibooks.org/wiki/F_Sharp_Programming/Discriminated_Unions
https://en.wikibooks.org/wiki/F_Sharp_Programming/Classes

74 CHAPTER 6. F# ADVANCED

type numKind = | Even | Odd let get_choice n = if n % 2
= 0 then Even else Odd

Active patterns can also define union constructors which
take a set of parameters. For example, consider we can
wrap a seq<'a> with an active pattern as follows:
let (|SeqNode|SeqEmpty|) s = if Seq.isEmpty s then
SeqEmpty else SeqNode ((Seq.hd s), Seq.skip 1 s)

This code is, of course, equivalent to the following:
type 'a seqWrapper = | SeqEmpty | SeqNode of 'a
* seq<'a> let get_choice s = if Seq.isEmpty s then
SeqEmpty else SeqNode ((Seq.hd s), Seq.skip 1 s)

You've probably noticed the immediate difference be-
tween active patterns and explicitly defined unions:

• Active patterns define an anonymous union, where
the explicit union has a name (numKind, seqWrap-
per, etc.).

• Active patterns determine their constructor parame-
ters using a kind of type-inference, whereas we need
to explicitly define the constructor parameters for
each case of our explicit union.

Using Active Patterns

The syntax for using active patterns looks a little odd, but
once you know what’s going on, it’s very easy to under-
stand. Active patterns are used in pattern matching ex-
pressions, for example:
> let (|Even|Odd|) n = if n % 2 = 0 then Even else Odd
let testNum n = match n with | Even -> printfn "%i is
even” n | Odd -> printfn "%i is odd” n;; val (|Even|Odd|
) : int -> Choice<unit,unit> val testNum : int -> unit >
testNum 12;; 12 is even val it : unit = () > testNum 17;;
17 is odd

What’s going on here? When the pattern matching func-
tion encounters Even, it calls (|Even|Odd|) with parameter
in the match clause, it’s as if you've written:
type numKind = | Even | Odd let get_choice n = if n
% 2 = 0 then Even else Odd let testNum n = match
get_choice n with | Even -> printfn "%i is even” n | Odd
-> printfn "%i is odd” n

The parameter in the match clause is always passed as the
last argument to the active pattern expression. Using our
seq example from earlier, we can write the following:
> let (|SeqNode|SeqEmpty|) s = if Seq.isEmpty s then
SeqEmpty else SeqNode ((Seq.head s), Seq.skip 1 s)
let perfectSquares = seq { for a in 1 .. 10 -> a * a
} let rec printSeq = function | SeqEmpty -> printfn

“Done.” | SeqNode(hd, tl) -> printf "%A " hd printSeq
tl;; val (|SeqNode|SeqEmpty|) : seq<'a> -> Choice<('a
* seq<'a>),unit> val perfectSquares : seq<int> val
printSeq : seq<'a> -> unit > printSeq perfectSquares;; 1
4 9 16 25 36 49 64 81 100 Done.

Traditionally, seq’s are resistant to pattern matching, but
now we can operate on them just as easily as lists.

Parameterizing Active Patterns

Its possible to pass arguments to active patterns, for ex-
ample:
> let (|Contains|) needle (haystack : string) =
haystack.Contains(needle) let testString = function |
Contains “kitty” true -> printfn “Text contains 'kitty'" |
Contains “doggy” true -> printfn “Text contains 'doggy'"
| _ -> printfn “Text neither contains 'kitty' nor 'doggy'";;
val (|Contains|) : string -> string -> bool val testString
: string -> unit > testString “I have a pet kitty and she’s
super adorable!";; Text contains 'kitty' val it : unit = ()
> testString “She’s fat and purrs a lot :)";; Text neither
contains 'kitty' nor 'doggy'

The single-case active pattern (|Contains|) wraps the
String.Contains function. When we call Contains “kitty”
true, F# passes “kitty” and the argument we're matching
against to the (|Contains|) active pattern and tests the re-
turn value against the value true. The code above is equiv-
alent to:
type choice = | Contains of bool let
get_choice needle (haystack : string) = Con-
tains(haystack.Contains(needle)) let testString n =
match get_choice “kitty” n with | Contains(true) ->
printfn “Text contains 'kitty'" | _ -> match get_choice
“doggy” n with | Contains(true) -> printfn “Text contains
'doggy'" | printfn “Text neither contains 'kitty' nor
'doggy'"

As you can see, the code using the active patterns is much
cleaner and easier to read than the equivalent code using
the explicitly defined union.

Note: Single-case active patterns might
not look terribly useful at first, but they can
really help to clean up messy code. For
example, the active pattern above wraps up
the String.Contains method and allows us to
invoke it in a pattern matching expression.
Without the active pattern, pattern matching
quickly becomes messy:
let testString = function | (n : string) when
n.Contains(“kitty”) -> printfn “Text contains
'kitty'" | n when n.Contains(“doggy”) -> printfn
“Text contains 'doggy'" | _ -> printfn “Text

6.4. ADVANCED DATA STRUCTURES 75

neither contains 'kitty' nor 'doggy'"

Partial Active Patterns

A partial active pattern is a special class of single-case
active patterns: it either returns Some or None. For ex-
ample, a very handy active pattern for working with regex
can be defined as follows:
> let (|RegexContains|_|) pattern input = let matches =
System.Text.RegularExpressions.Regex.Matches(input,
pattern) if matches.Count > 0 then Some [for m in
matches -> m.Value] else None let testString = func-
tion | RegexContains "http://\char"005C\relax{}S+"
urls -> printfn “Got urls: %A” urls | RegexContains
"[^@]@[^.]+\.\W+" emails -> printfn “Got email
address: %A” emails | RegexContains "\d+" numbers
-> printfn “Got numbers: %A” numbers | _ -> printfn
“Didn't find anything.";; val (|RegexContains|_|) : string
-> string -> string list option val testString : string ->
unit > testString “867-5309, Jenny are you there?";; Got
numbers: ["867"; “5309"]

This is equivalent to writing:
type choice = | RegexContains of string list let
get_choice pattern input = let matches = Sys-
tem.Text.RegularExpressions.Regex.Matches(input, pat-
tern) if matches.Count > 0 then Some (RegexContains [
form inmatches ->m.Value]) else None let testString n =
match get_choice "http://\char"005C\relax{}S+" n with
| Some(RegexContains(urls)) -> printfn “Got urls: %A”
urls | None -> match get_choice "[^@]@[^.]+\.\W+"
n with | Some(RegexContains emails) -> printfn “Got
email address: %A” emails | None -> match get_choice
"\d+" n with | Some(RegexContains numbers) -> printfn
“Got numbers: %A” numbers | _ -> printfn “Didn't find
anything.”

Using partial active patterns, we can test an input against
any number of active patterns:
let (|StartsWith|_|) needle (haystack : string) = if
haystack.StartsWith(needle) then Some() else None
let (|EndsWith|_|) needle (haystack : string) = if
haystack.EndsWith(needle) then Some() else None let
(|Equals|_|) x y = if x = y then Some() else None let
(|EqualsMonkey|_|) = function (* “Higher-order” active
pattern *) | Equals “monkey” () -> Some() | _ -> None
let (|RegexContains|_|) pattern input = let matches =
System.Text.RegularExpressions.Regex.Matches(input,
pattern) if matches.Count > 0 then Some [for m in
matches -> m.Value] else None let testString n =
match n with | StartsWith “kitty” () -> printfn “starts
with 'kitty'" | StartsWith “bunny” () -> printfn “starts
with 'bunny'" | EndsWith “doggy” () -> printfn “ends
with 'doggy'" | Equals “monkey” () -> printfn “equals

'monkey'" | EqualsMonkey -> printfn “EqualsMonkey!"
(* Note: EqualsMonkey and EqualsMonkey() are equiv-
alent *) | RegexContains "http://\char"005C\relax{}S+"
urls -> printfn “Got urls: %A” urls | RegexContains
"[^@]@[^.]+\.\W+" emails -> printfn “Got email
address: %A” emails | RegexContains "\d+" numbers
-> printfn “Got numbers: %A” numbers | _ -> printfn
“Didn't find anything.”

Partial active patterns don't constrain us to a finite set of
cases like traditional unions do, we can use as many par-
tial active patterns in match statement as we need.

6.3.2 Additional Resources

• Introduction to Active Patterns by Chris Smith

• Extensible Pattern Matching via Lightweight Lan-
guage Extension by Don Syme

6.4 Advanced Data Structures

F# comes with its own set of data structures, however its
very important to know how to implement data structures
from scratch.
Incidentally, hundreds of authors have written thousands
of lengthy volumes on this single topic alone, so its unrea-
sonable to provide a comprehensive picture of data struc-
tures in the short amount of space available for this book.
Instead, this chapter is intended as a cursory introduction
to the development of immutable data structures using
F#. Readers are encouraged to use the resources listed at
the bottom of this page for a more comprehensive treat-
ment of algorithms and data structures.

6.4.1 Stacks

F#'s built-in list data structure is essentially an immutable
stack. While its certainly usable, for the purposes of writ-
ing exploratory code, we're going to implement a stack
from scratch. We can represent each node in a stack us-
ing a simple union:
type 'a stack = | EmptyStack | StackNode of 'a * 'a stack

It’s easy enough to create an instance of a stack using:
let stack = StackNode(1, StackNode(2, StackNode(3,
StackNode(4, StackNode(5, EmptyStack)))))

Each StackNode contains a value and a pointer to the next
stack in the list. The resulting data structure can be dia-
grammed as follows:
___ ___ ___ ___ ___ |_1_|->|_2_|->|_3_|->|_4_|->|_5_|-
>Empty

http://blogs.msdn.com/chrsmith/archive/2008/02/21/Introduction-to-F_2300_-Active-Patterns.aspx
http://research.microsoft.com/pubs/79947/p29-syme.pdf
http://research.microsoft.com/pubs/79947/p29-syme.pdf
https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists

76 CHAPTER 6. F# ADVANCED

We can create a boilerplate stack module as follows:
module Stack = type 'a stack = | EmptyStack | StackNode
of 'a * 'a stack let hd = function | EmptyStack -> failwith
“Empty stack” | StackNode(hd, tl) -> hd let tl = function
| EmptyStack -> failwith “Empty stack” | StackNode(hd,
tl) -> tl let cons hd tl = StackNode(hd, tl) let empty =
EmptyStack

Let’s say we wanted to add a few methods to our stack,
such as amethod which updates an item at a certain index.
Since our nodes are immutable, we can't update our list
in place; we need to copy all of the nodes up to the node
we want to update.
Setting item at index 2 to the value 9. 0 1 2 3 4 ___ ___
___ ___ ___ let x = |_1_|->|_2_|->|_3_|->|_4_|->|_5_|-
>Empty ^ / ___ ___ ___ / let y = |_1_|->|_2_|->|_9_|
So, we copy all of the nodes up to index 2 and reuse the
remaining nodes. A function like this is very easy to write:
let rec update index value s = match index, s with |
index, EmptyStack -> failwith “Index out of range”
| 0, StackNode(hd, tl) -> StackNode(value, tl) | n,
StackNode(hd, tl) -> StackNode(hd, update (index - 1)
value tl)

Appending items from one stack to the rear of another
uses a similar technique. Since we can't modify stacks in
place, we append two stacks by copying all of the nodes
from the “front” stack and pointing the last copied node
to the our “rear” stack, resulting in the following:
Append x and y ___ ___ ___ ___ ___ let x = |_1_|->|_2_|-
>|_3_|->|_4_|->|_5_|->Empty ___ ___ ___ let y = |_6_|-
>|_7_|->|_8_|->Empty ^ / ___ ___ ___ ___ ___ / let z =
|_1_|->|_2_|->|_3_|->|_4_|->|_5_|
We can implement this function withminimal effort using
the following:
let rec append x y = match x with | EmptyStack -> y |
StackNode(hd, tl) -> StackNode(hd, append tl y)

Stacks are very easy to work with and implement. The
principles behind copying nodes to “modify” stacks is
fundamentally the same for all persistent data structures.
Complete Stack Module
module Stack = type 'a stack = | EmptyStack | StackNode
of 'a * 'a stack let hd = function | EmptyStack -> failwith
“Empty stack” | StackNode(hd, tl) -> hd let tl = function
| EmptyStack -> failwith “Emtpy stack” | StackNode(hd,
tl) -> tl let cons hd tl = StackNode(hd, tl) let empty =
EmptyStack let rec update index value s = match index,
s with | index, EmptyStack -> failwith “Index out of
range” | 0, StackNode(hd, tl) -> StackNode(value, tl) | n,
StackNode(hd, tl) -> StackNode(hd, update (index - 1)
value tl) let rec append x y = match x with | EmptyStack
-> y | StackNode(hd, tl) -> StackNode(hd, append tl y)

let rec map f = function | EmptyStack -> EmptyStack
| StackNode(hd, tl) -> StackNode(f hd, map f tl) let
rec rev s = let rec loop acc = function | EmptyStack
-> acc | StackNode(hd, tl) -> loop (StackNode(hd,
acc)) tl loop EmptyStack s let rec contains x = function
| EmptyStack -> false | StackNode(hd, tl) -> hd =
x || contains x tl let rec fold f seed = function | Emp-
tyStack -> seed | StackNode(hd, tl) -> fold f (f seed hd) tl

6.4.2 Queues

Naive Queue

Queues aren't quite as straightforward as stacks. A naive
queue can be implemented using a stack, with the caveat
that:

• Items are always appended to the end of the list, and
dequeued from the head of the stack.

• -OR- Items are prepended to the front of the stack,
and dequeued by reversing the stack and getting its
head.

(* AwesomeCollections.fsi *) type 'a stack = | EmptyS-
tack | StackNode of 'a * 'a stack module Stack = begin
val hd : 'a stack -> 'a val tl : 'a stack -> 'a stack val cons :
'a -> 'a stack -> 'a stack val empty : 'a stack val rev : 'a
stack -> 'a stack end [<Class>] type 'a Queue = member
hd : 'a member tl : 'a Queue member enqueue : 'a -> 'a
Queue static member empty : 'a Queue
(* AwesomeCollections.fs *) type 'a stack = | Emp-
tyStack | StackNode of 'a * 'a stack module Stack =
let hd = function | EmptyStack -> failwith “Empty
stack” | StackNode(hd, tl) -> hd let tl = function
| EmptyStack -> failwith “Emtpy stack” | StackN-
ode(hd, tl) -> tl let cons hd tl = StackNode(hd, tl) let
empty = EmptyStack let rec rev s = let rec loop acc
= function | EmptyStack -> acc | StackNode(hd, tl) ->
loop (StackNode(hd, acc)) tl loop EmptyStack s type
Queue<'a>(item : stack<'a>) = member this.hd with
get() = Stack.hd (Stack.rev item) member this.tl with
get() = Queue(item |> Stack.rev |> Stack.tl |> Stack.rev)
member this.enqueue(x) = Queue(StackNode(x, item))
override this.ToString() = sprintf "%A” item static
member empty = Queue<'a>(Stack.empty)

We use an interface file to hide the Queue class’s con-
structor. Although this technically satisfies the function
of a queue, every dequeue is an O(n) operation where n
is the number of items in the queue. There are lots of
variations on the same approach, but these are often not
very practical in practice. We can certainly improve on
the implementation of immutable queues.

6.4. ADVANCED DATA STRUCTURES 77

Queue From Two Stacks

The implementation above isn't very efficient because it
requires reversing our underlying data representation sev-
eral times. Why not keep those reversed stacks around for
future use? Rather than using one stack, we can have two
stacks: a front stack f and a rear stack r.
Stack f holds items in the correct order, while stack r
holds items in reverse order; this allows the first element
in f to be the head of the queue, and the first element in r
to be the last item in queue. So, a queue of the numbers 1
.. 6 might be represented with f = [1;2;3] and r = [6;5;4].
To enqueue a new item, prepend it to the front of r; to de-
queue an item, pop it off f. Both enqueues and dequeues
are O(1) operations. Of course, at some point, f will be
empty and there will be no more items to dequeue; in this
case, simply move all items from r to f and reverse the list.
While the queue certainly has O(n) worst-case behavior,
it has acceptable O(1) amortized (average case) bounds.
The code for this implementation is straight forward:
type Queue<'a>(f : stack<'a>, r : stack<'a>) = let check
= function | EmptyStack, r -> Queue(Stack.rev r, Emp-
tyStack) | f, r -> Queue(f, r) member this.hd = match f
with | EmptyStack -> failwith “empty” | StackNode(hd,
tl) -> hd member this.tl = match f, r with | EmptyStack,
_ -> failwith “empty” | StackNode(x, f), r -> check(f,
r) member this.enqueue(x) = check(f, StackNode(x,
r)) static member empty = Queue<'a>(Stack.empty,
Stack.empty)

This is a simple, common, and useful implementation of
an immutable queue. The magic is in the check function
which maintains that f always contains items if they are
available.

Note: The queue’s periodic O(n) worst case
behavior can give it unpredictable response
times, especially in applications which rely
heavily on persistence since its possible to hit
the pathological case each time the queue is ac-
cessed. However, this particular implementa-
tion of queues is perfectly adequate for the vast
majority of applications which do not require
persistence or uniform response times.

As shown above, we often want to wrap our underlying
data structure in class for two reasons:

1. To simplify the interface to the data structure. For
example, clients neither know nor care that our
queue uses two stacks; they only know that items in
the queue obey the principle of first-in, first-out.

2. To prevent clients from putting the underlying data
in the data structure in an invalid state.

Beyond stacks, virtually all data structures are complex
enough to require wrapping up class to hide away complex
details from clients.

6.4.3 Binary Search Trees

Binary search trees are similar to stacks, but each node
points to two other nodes called the left and right child
nodes:
type 'a tree = | EmptyTree | TreeNode of 'a * 'a tree * 'a
tree

Additionally, nodes in the tree are ordered in a particular
way: each item in a tree is greater than all items in its left
child node and less than all items in its right child node.
Since our tree is immutable, we “insert” into the tree by
returning a brand new tree with the node inserted. This
process is more efficient than it sounds: we copy nodes as
we traverse down the tree, so we only copy nodes which
are in the path of our node being inserted. Writing a bi-
nary search tree is relatively straightforward:
(* AwesomeCollections.fsi *) [<Class>] type 'a Bina-
ryTree = member hd : 'a member exists : 'a -> bool
member insert : 'a -> 'a BinaryTree
(* AwesomeCollections.fs *) type 'a tree = | EmptyTree
| TreeNode of 'a * 'a tree * 'a tree module Tree =
let hd = function | EmptyTree -> failwith “empty” |
TreeNode(hd, l, r) -> hd let rec exists item = function |
EmptyTree -> false | TreeNode(hd, l, r) -> if hd = item
then true elif item < hd then exists item l else exists item
r let rec insert item = function | EmptyTree -> TreeN-
ode(item, EmptyTree, EmptyTree) | TreeNode(hd, l,
r) as node -> if hd = item then node elif item < hd
then TreeNode(hd, insert item l, r) else TreeNode(hd,
l, insert item r) type 'a BinaryTree(inner : 'a tree) =
member this.hd = Tree.hd inner member this.exists
item = Tree.exists item inner member this.insert item =
BinaryTree(Tree.insert item inner) member this.empty
= BinaryTree<'a>(EmptyTree)

We're using an interface and a wrapper class to hide the
implementation details of the tree from the user, other-
wise the user could construct a tree which invalidates the
specific ordering rules used in the binary tree.
This implementation is simple and it allows us to add and
lookup any item in the tree in O(log n) best case time.
However, it suffers from a pathological case: if we add
items in sorted order, or mostly sorted order, then the
tree can become heavily unbalanced. For example, the
following code:
[1 .. 7] |> Seq.fold (fun (t : BinaryTree<_>) x ->
t.insert(x)) BinaryTree.empty

Results in this tree:

78 CHAPTER 6. F# ADVANCED

1 / \ E 2 / \ E 3 / \ E 4 / \ E 5 / \ E 6 / \ E 7 / \ E E
A tree like this isn't much better than our inefficient queue
implementation above! Trees are most efficient when
they have a minimum height and are as full as possible.
Ideally, we'd like to represent the tree above as follows:
_ 4 _ / \ 2 6 / \ / \ 1 3 5 7 / \ / \ / \ / \ E E E E E E E E
The minimum height of the tree is ceiling(log n + 1),
where n is the number of items in the list. When we in-
sert items into the tree, we want the tree to balance itself
to maintain the minimum height. There are a variety of
self-balancing tree implementations, many of which are
easy to implement as immutable data structures.

Red Black Trees

Red-black trees are self-balancing trees which attach a
“color” attribute to each node in the tree. In addition
to the rules defining a binary search tree, red-black trees
must maintain the following set of rules:

1. A node is either red or black.

2. The root node is always black.

3. No red node has a red child.

4. Every simple path from a given node to any of its de-
scendant leaves contains the same number of black
nodes.

13

8 17

1 25

6 22

NILNIL

27

NILNIL

15

NILNIL

11

NILNILNIL

NILNIL

An example of a red-black tree

We can augment our binary tree with a color field as fol-
lows:
type color = R | B type 'a tree = | E | T of color * 'a * 'a
tree * 'a tree

When we insert into the tree, we need to rebalance the
tree to restore the rules. In particular, we need to remove
nodes with a red child. There are four cases where a red
node may have a red child. They are depicted in the dia-
gram below by the top, right, bottom, and left trees. The
center tree is the balanced version.
B(z) / \ R(x) d / \ a R(y) / \ b c || \/ B(z) R(y) B(x) / \ / \ /
\ R(y) d => B(x) B(z) <= a R(y) / \ / \ / \ / \ R(x) c a b c
d b R(z) / \ / \ a b c d /\ || B(x) / \ a R(z) / \ R(y) d / \ b c

We can modify our binary tree class as follows:
(* AwesomeCollections.fsi *) [<Class>] type 'a Bina-
ryTree = member hd : 'a member left : 'a BinaryTree
member right : 'a BinaryTree member exists : 'a -> bool
member insert : 'a -> 'a BinaryTree member print : unit
-> unit static member empty : 'a BinaryTree
(* AwesomeCollections.fs *) type color = R | B type 'a
tree = | E | T of color * 'a tree * 'a * 'a tree module Tree
= let hd = function | E -> failwith “empty” | T(c, l, x,
r) -> x let left = function | E -> failwith “empty” | T(c,
l, x, r) -> l let right = function | E -> failwith “empty” |
T(c, l, x, r) -> r let rec exists item = function | E -> false
| T(c, l, x, r) -> if item = x then true elif item < x then
exists item l else exists item r let balance = function (*
Red nodes in relation to black root *) | B, T(R, T(R, a,
x, b), y, c), z, d (* Left, left *) | B, T(R, a, x, T(R, b, y,
c)), z, d (* Left, right *) | B, a, x, T(R, T(R, b, y, c), z,
d) (* Right, left *) | B, a, x, T(R, b, y, T(R, c, z, d)) (*
Right, right *) -> T(R, T(B, a, x, b), y, T(B, c, z, d)) | c,
l, x, r -> T(c, l, x, r) let insert item tree = let rec ins =
function | E -> T(R, E, item, E) | T(c, a, y, b) as node ->
if item = y then node elif item < y then balance(c, ins a,
y, b) else balance(c, a, y, ins b) (* Forcing root node to
be black *) match ins tree with | E -> failwith “Should
never return empty from an insert” | T(_, l, x, r) -> T(B,
l, x, r) let rec print (spaces : int) = function | E -> () |
T(c, l, x, r) -> print (spaces + 4) r printfn "%s %A%A”
(new System.String(' ', spaces)) c x print (spaces + 4) l
type 'a BinaryTree(inner : 'a tree) = member this.hd =
Tree.hd inner member this.left = BinaryTree(Tree.left
inner) member this.right = BinaryTree(Tree.right inner)
member this.exists item = Tree.exists item inner member
this.insert item = BinaryTree(Tree.insert item inner)
member this.print() = Tree.print 0 inner static member
empty = BinaryTree<'a>(E)

All of the magic that makes this tree work happens in
the balance function. We're not performing any terribly
complicated transformations to the tree, yet it comes out
relatively balanced (in fact, the maximum depth of this
tree is 2 * ceiling(log n + 1)).

AVL Trees

AVL trees are named after its two inventors, G.M.
Adelson-Velskii and E.M. Landis. These trees are self-
balancing because the heights of the two child subtrees
of any node will only differ 0 or 1; therefore, these trees
are said to be height-balanced.
An empty node in a tree has a height of 0; non-empty
nodes have a height >= 1. We can store the height of
each node in our tree definition:
type 'a tree = | Node of int * 'a tree * 'a * 'a tree (* height,
left child, value, right child *) | Nil

6.4. ADVANCED DATA STRUCTURES 79

The height of any node is equal to max(left height, right
height) + 1. For convenience, we'll use the following con-
structor to create a tree node and initialize its height:
let height = function | Node(h, _, _, _) -> h | Nil -> 0 let
make l x r = let h = 1 + max (height l) (height r) Node(h,
l, x ,r)

Inserting into an AVL tree is very similar to inserting
into an unbalanced binary tree with one exception: af-
ter we insert a node, we use a series of tree rotations to
re-balance the tree. Each node has an implicit property,
its balance factor, which refers to the left-child’s height
minus the right-child’s height; a positive balance factor
indicates the tree is weighted on the left, negative indi-
cates the tree is weighted on the right, otherwise the tree
is balanced.
We only need to rebalance the tree when balance factor
for a node is +/−2. There are four scenarios which can
cause our tree to become unbalanced:
Left-left case: root balance factor = +2, left-childs bal-
ance factor = +1. Balanced by right-rotating the root
node:
5 3 / \ Root / \ 3 D Right rotation 2 5 / \ -----> / \ / \ 2 C
A B C D / \ A B
Left-right case: root balance factor = +2, right-child’s
balance factor = −1. Balanced by left-rotating the left
child, then right-rotating the root (this operation is called
a double right rotation):
5 5 4 / \ Left child / \ Root / \ 3 D Left rotation 4 D Right
rotation 3 5 / \ -----> / \ -----> / \ / \ A 4 3 C A B C D / \
/ \ B C A B
Right-right case: root balance factor = −2, right-child’s
balance factor = −1. Balanced by left-rotating the root
node:
3 5 / \ Root / \ A 5 Left rotation 3 7 / \ -----> / \ / \ B 7 A
B C D / \ C D
Right-left case: root balance factor = −2, right-child’s
balance factor = +1. Balanced by right-rotating the right
child, then left-rotating the root (this operation is called a
double-left rotation):
3 3 4 / \ Right child / \ Root / \ A 5 Right rotation A 4
Left rotation 3 5 / \ -----> / \ -----> / \ / \ 4 D B 5 A B C
D / \ / \ B C C D
With this in mind, its very easy to put together the rest of
our AVL tree:
(* AwesomeCollections.fsi *) [<Class>] type 'a AvlTree
= member Height : int member Left : 'a AvlTree member
Right : 'a AvlTree member Value : 'a member Insert :
'a -> 'a AvlTree member Contains : 'a -> bool module
AvlTree = [<GeneralizableValue>] val empty<'a> :
AvlTree<'a>
(* AwesomeCollections.fs *) type 'a tree = | Node of
int * 'a tree * 'a * 'a tree | Nil (* Notation: h = height

x = value l = left child r = right child lh = left child’s
height lx = left child’s value ll = left child’s left child
lr = left child’s right child rh = right child’s height rx =
right child’s value rl = right child’s left child rr = right
child’s right child *) let height = function | Node(h,
_, _, _) -> h | Nil -> 0 let make l x r = let h = 1 +
max (height l) (height r) Node(h, l, x ,r) let rotRight =
function | Node(_, Node(_, ll, lx, lr), x, r) -> let r' =
make lr x r make ll lx r' | node -> node let rotLeft =
function | Node(_, l, x, Node(_, rl, rx, rr)) -> let l' =
make l x rl make l' rx rr | node -> node let doubleRotLeft
= function | Node(h, l, x, r) -> let r' = rotRight r let
node' = make l x r' rotLeft node' | node -> node let
doubleRotRight = function | Node(h, l, x, r) -> let l' =
rotLeft l let node' = make l' x r rotRight node' | node ->
node let balanceFactor = function | Nil -> 0 | Node(_,
l, _, r) -> (height l) - (height r) let balance = function
(* left unbalanced *) | Node(h, l, x, r) as node when
balanceFactor node >= 2 -> if balanceFactor l >= 1 then
rotRight node (* left left case *) else doubleRotRight
node (* left right case *) (* right unbalanced *) | Node(h,
l, x, r) as node when balanceFactor node <= −2 -> if
balanceFactor r <= −1 then rotLeft node (* right right
case *) else doubleRotLeft node (* right left case *) |
node -> node let rec insert v = function | Nil -> Node(1,
Nil, v, Nil) | Node(_, l, x, r) as node -> if v = x then node
else let l', r' = if v < x then insert v l, r else l, insert v r
let node' = make l' x r' balance <| node' let rec contains
v = function | Nil -> false | Node(_, l, x, r) -> if v = x
then true else if v < x then contains v l else contains v r
type 'a AvlTree(tree : 'a tree) = member this.Height =
height tree member this.Left = match tree with | Node(_,
l, _, _) -> new AvlTree<'a>(l) | Nil -> failwith “Empty
tree” member this.Right = match tree with | Node(_, _,
_, r) -> new AvlTree<'a>(r) | Nil -> failwith “Empty
tree” member this.Value = match tree with | Node(_,
_, x, _) -> x | Nil -> failwith “Empty tree” member
this.Insert(x) = new AvlTree<'a>(insert x tree) member
this.Contains(v) = contains v tree module AvlTree =
[<GeneralizableValue>] let empty<'a> : AvlTree<'a> =
new AvlTree<'a>(Nil)

Note: The [<GeneralizableValue>] attribute
indicates to F# that the construct can give
rise to generic code through type inference .
Without the attribute, F# will infer the type
of AvlTree.empty as the undefined type Avl-
Tree<'_a>, resulting in a “value restriction” er-
ror at compilation.

Optimization tip: The tree supports inserts
and lookups in log(n) time, where n is the num-
ber of nodes in the tree. This is already pretty
good, but we can make it faster by eliminating
unnecessary comparisons. Notice when we in-
sert a node into the left side of the tree, we can
only add weight to the left child; however, the

80 CHAPTER 6. F# ADVANCED

balance function checks both sides of the tree
for each insert. By re-writing balance into a
balance_left and balance_right function to han-
dle, we can handle left- and right-child inserts
separately. Similar optimizations are possible
on the red-black tree implementation as well.

An AVL trees height is limited to 1.44 * log(n), whereas
a red-black tree’s height is limited to 2 * log(n). The
AVL trees smaller height and more rigid balancing leads
to slower insert/removal but faster retrieval than red-black
trees. In practice, the difference will be hardly notice-
able: a lookup on a 10,000,000 node AVL tree lookup
requires at most 34 comparisons, compared to 47 com-
parisons on a red-black tree.

Heaps

Binary search trees can efficiently find arbitrary elements
in a set, however it can be occasionally useful to access the
minimum element in set. Heaps are special data structure
which satisfy the heap property: the value of every node
is greater than the value of any of its child nodes. Ad-
ditionally, we can keep the tree approximately balanced
using the leftist property, meaning that the height of any
left child heap is at least as large as its right sibling. We
can hold the height of each tree in each heap node.
Finally, since heaps can be implemented as min- or max-
heaps, where the root element will either be the largest or
smallest element in the set, we support both types of heaps
by passing in an ordering function into heap’s constructor
as such:
type 'a heap = | EmptyHeap | HeapNode of int * 'a * 'a
heap * 'a heap type 'a BinaryHeap(comparer : 'a -> 'a ->
int, inner : 'a heap) = static member make(comparer) =
BinaryHeap<_>(comparer, EmptyHeap)

Note: the functionality we gain by passing
the comparer function into the BinaryHeap
constructor approximates OCaml functors, al-
though its not quite as elegant.

An interesting consequence of the leftist property is that
elements along any path in a heap are stored in sorted or-
der. This means we can merge any two heaps by merging
their right spines and swapping children as necessary to
restore the leftist property. Since each right spine con-
tains at least as many nodes as the left spine, the height
of each right spine is proportional to the logarithm of the
number of elements in the heap, so merging two heaps
can be performed in O(log n) time. We can implement
all of the properties of our heap as follows:
(* AwesomeCollections.fsi *) [<Class>] type 'a
BinaryHeap = member hd : 'a member tl : 'a Bi-
naryHeap member insert : 'a -> 'a BinaryHeap

member merge : 'a BinaryHeap -> 'a BinaryHeap
interface System.Collections.IEnumerable interface
System.Collections.Generic.IEnumerable<'a> static
member make : ('b -> 'b -> int) -> 'b BinaryHeap
(* AwesomeCollections.fs *) type 'a heap = | EmptyHeap
| HeapNode of int * 'a * 'a heap * 'a heap module Heap =
let height = function | EmptyHeap -> 0 | HeapNode(h, _,
_, _) -> h (* Helper function to restore the leftist property
*) let makeT (x, a, b) = if height a >= height b then
HeapNode(height b + 1, x, a, b) else HeapNode(height
a + 1, x, b, a) let rec merge comparer = function | x,
EmptyHeap -> x | EmptyHeap, x -> x | (HeapNode(_,
x, l1, r1) as h1), (HeapNode(_, y, l2, r2) as h2) -> if
comparer x y <= 0 then makeT(x, l1, merge comparer
(r1, h2)) else makeT (y, l2, merge comparer (h1, r2))
let hd = function | EmptyHeap -> failwith “empty” |
HeapNode(h, x, l, r) -> x let tl comparer = function |
EmptyHeap -> failwith “empty” | HeapNode(h, x, l,
r) -> merge comparer (l, r) let rec to_seq comparer =
function | EmptyHeap -> Seq.empty | HeapNode(h, x,
l, r) as node -> seq { yield x; yield! to_seq comparer
(tl comparer node) } type 'a BinaryHeap(comparer :
'a -> 'a -> int, inner : 'a heap) = (* private *) mem-
ber this.inner = inner (* public *) member this.hd =
Heap.hd inner member this.tl = BinaryHeap(comparer,
Heap.tl comparer inner) member this.merge (other :
BinaryHeap<_>) = BinaryHeap(comparer, Heap.merge
comparer (inner, other.inner)) member this.insert
x = BinaryHeap(comparer, Heap.merge comparer
(inner,(HeapNode(1, x, EmptyHeap, EmptyHeap))))
interface System.Collections.Generic.IEnumerable<'a>
with member this.GetEnumerator() = (Heap.to_seq
comparer inner).GetEnumerator() interface Sys-
tem.Collections.IEnumerable with member
this.GetEnumerator() = (Heap.to_seq comparer inner :>
System.Collections.IEnumerable).GetEnumerator()
static member make(comparer) = Binary-
Heap<_>(comparer, EmptyHeap)

This heap implements the IEnumerable<'a> interface, al-
lowing us to iterate through it like a seq. In addition to
the leftist heap shown above, its very easy to implement
immutable versions of splay heaps, binomial heaps, Fi-
bonacci heaps, pairing heaps, and a variety other tree-like
data structures in F#.

6.4.4 Lazy Data Structures

Its worth noting that some purely functional data struc-
tures above are not as efficient as their imperative im-
plementations. For example, appending two immutable
stacks x and y together takes O(n) time, where n is the
number of elements in stack x. However, we can exploit
laziness in ways which make purely functional data struc-
tures just as efficient as their imperative counterparts.
For example, its easy to create a stack-like data structure
which delays all computation until its really needed:

https://en.wikibooks.org/wiki/F_Sharp_Programming/Caching#Lazy_Values

6.5. REFLECTION 81

type 'a lazyStack = | Node of Lazy<'a * 'a lazyStack> |
EmptyStack module LazyStack = let (|Cons|Nil|) = func-
tion | Node(item) -> let hd, tl = item.Force() Cons(hd, tl)
| EmptyStack -> Nil let hd = function | Cons(hd, tl) -> hd |
Nil -> failwith “empty” let tl = function | Cons(hd, tl) -> tl
| Nil -> failwith “empty” let cons(hd, tl) = Node(lazy(hd,
tl)) let empty = EmptyStack let rec append x y = match
x with | Cons(hd, tl) -> Node(lazy(printfn “appending...
got %A” hd; hd, append tl y)) | Nil -> y let rec iter f =
function | Cons(hd, tl) -> f(hd); iter f tl | Nil -> ()

In the example above, the append operation returns one
node delays the rest of the computation, so appending
two lists will occur in constant time. A printfn statement
above has been added to demonstrate that we really don't
compute appended values until the first time they're ac-
cessed:
> open LazyStack;; > let x = cons(1, cons(2, cons(3,
cons(4, EmptyStack))));; val x : int lazyStack =
Node <unevaluated> > let y = cons(5, cons(6, cons(7,
EmptyStack)));; val y : int lazyStack = Node <un-
evaluated> > let z = append x y;; val z : int lazyStack
= Node <unevaluated> > hd z;; appending... got 1
val it : int = 1 > hd (tl (tl z));; appending... got 2
appending... got 3 val it : int = 3 > iter (fun x -> printfn
"%i” x) z;; 1 2 3 appending... got 4 4 5 6 7 val it : unit = ()

Interestingly, the appendmethod clearly runs inO(1) time
because the actual appending operation is delayed until a
user grabs the head of the list. At the same time, grabbing
the head of the list may have the side effect of triggering,
at most, one call to the append method without causing
a monolithic rebuilding the rest of the data structure, so
grabbing the head is itself an O(1) operation. This stack
implementation supports supports constant-time consing
and appending, and linear time lookups.
Similarly, implementations of lazy queues exists which
support O(1) worst-case behavior for all operations.

6.4.5 Additional Resources

• Purely Functional Data Structures] by Chris
Okasaki (ISBN 978-0521663502). Highly rec-
ommended. Provides techniques and analysis of
immutable data structures using SML.

• The Algorithm Design Manual by Steven S. Skiena
(ISBN 978-0387948607). Highly recommended.
Provides language-agnostic description of a variety
of algorithms, data structures, and techniques for
solving hard problems in computer science.

• Tutorial on immutable data structures using C#:

1. Kinds of Immutability
2. A Simple Immutable Stack

3. A Covariant Immutable Stack
4. An Immutable Queue
5. LOLZ!
6. A Simple Binary Tree
7. More on Binary Trees
8. Even More on Binary Trees
9. AVL Tree Implementation
10. A Double-ended Queue
11. A Working Double-ended Queue

6.5 Reflection

Reflection allows programmers to inspect types and in-
vokemethods of objects at runtime without knowing their
data type at compile time.
At first glance, reflection seems to go against the spirit
of ML as it is inherently not type-safe, so typing errors
using reflection are not discovered until runtime. How-
ever, .NET’s typing philosophy is best stated as static typ-
ing where possible, dynamic typing when needed, where
reflection serves to bring in the most desirable behaviors
of dynamic typing into the static typing world. In fact,
dynamic typing can be a huge time saver, often promotes
the design of more expressive APIs, and allows code to be
refactored much further than possible with static typing.
This section is intended as a cursory overview of reflec-
tion, not a comprehensive tutorial.

6.5.1 Inspecting Types

There are a variety of ways to inspect the type of an
object. The most direct way is calling the .GetType()
method (inherited from System.Object) on any non-null
object:
> “hello world”.GetType();; val it : System.Type =
System.String {Assembly = mscorlib, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089;
AssemblyQualifiedName = “System.String, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyTo-
ken=b77a5c561934e089"; Attributes = AutoLayout,
AnsiClass, Class, Public, Sealed, Serializable, Be-
foreFieldInit; BaseType = System.Object; Contains-
GenericParameters = false; DeclaringMethod = ?;
DeclaringType = null; FullName = “System.String";
GUID = 296afbff-1b0b-3ff5-9d6c-4e7e599f8b57;
GenericParameterAttributes = ?; GenericParameterPo-
sition = ?; ...

Its also possible to get type information without an actual
object using the built-in typeof method:
> typeof<System.IO.File>;; val it : System.Type =
System.IO.File {Assembly = mscorlib, Version=2.0.0.0,

https://en.wikibooks.org/wiki/Special:BookSources/9780521663502
https://en.wikibooks.org/wiki/Special:BookSources/9780387948607
http://blogs.msdn.com/ericlippert/archive/2007/11/13/immutability-in-c-part-one-kinds-of-immutability.aspx
http://blogs.msdn.com/ericlippert/archive/2007/12/04/immutability-in-c-part-two-a-simple-immutable-stack.aspx
http://blogs.msdn.com/ericlippert/archive/2007/12/06/immutability-in-c-part-three-a-covariant-immutable-stack.aspx
http://blogs.msdn.com/ericlippert/archive/2007/12/10/immutability-in-c-part-four-an-immutable-queue.aspx
http://blogs.msdn.com/ericlippert/archive/2007/12/13/immutability-in-c-part-five-lolz.aspx
http://blogs.msdn.com/ericlippert/archive/2007/12/18/immutability-in-c-part-six-a-simple-binary-tree.aspx
http://blogs.msdn.com/ericlippert/archive/2007/12/19/immutability-in-c-part-seven-more-on-binary-trees.aspx
http://blogs.msdn.com/ericlippert/archive/2008/01/18/immutability-in-c-part-eight-even-more-on-binary-trees.aspx
http://blogs.msdn.com/ericlippert/archive/2008/01/21/immutability-in-c-part-nine-academic-plus-my-avl-tree-implementation.aspx
http://blogs.msdn.com/ericlippert/archive/2008/01/22/immutability-in-c-part-10-a-double-ended-queue.aspx
http://blogs.msdn.com/ericlippert/archive/2008/02/12/immutability-in-c-part-eleven-a-working-double-ended-queue.aspx

82 CHAPTER 6. F# ADVANCED

Culture=neutral, PublicKeyToken=b77a5c561934e089;
AssemblyQualifiedName = “System.IO.File, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyTo-
ken=b77a5c561934e089"; Attributes = AutoLayout,
AnsiClass, Class, Public, Abstract, Sealed, BeforeFiel-
dInit; BaseType = System.Object; ContainsGenericPa-
rameters = false; DeclaringMethod = ?; DeclaringType
= null; FullName = “System.IO.File"; ...

object.GetType and typeof return an instance of
System.Type, which has a variety of useful properties
such as:

• val Name : string

Returns the name of the type.

• val GetConstructors : unit -> ConstructorInfo
array

Returns an array of constructors defined on the
type.

• val GetMembers : unit -> MemberInfo array

Returns an array of members defined on the
type.

• val InvokeMember : (name : string, invokeAttr :
BindingFlags, binder : Binder, target : obj, args
: obj) -> obj

Invokes the specified member, using the speci-
fied binding constraints and matching the spec-
ified argument list

Example: Reading Properties

The following programwill print out the properties of any
object passed into it:
type Car(make : string, model : string, year : int) =
member this.Make = make member this.Model = model
member this.Year = year member this.WheelCount =
4 type Cat() = let mutable age = 3 let mutable name
= System.String.Empty member this.Purr() = printfn
“Purrr” member this.Age with get() = age and set(v) =
age <- v member this.Name with get() = name and set(v)
= name <- v let printProperties x = let t = x.GetType() let
properties = t.GetProperties() printfn "-----------" printfn
"%s” t.FullName properties |> Array.iter (fun prop -> if
prop.CanRead then let value = prop.GetValue(x, null)
printfn "%s: %O” prop.Name value else printfn "%s: ?"
prop.Name) let carInstance = new Car(“Ford”, “Focus”,
2009) let catInstance = let temp = new Cat() temp.Name

<- “Mittens” temp printProperties carInstance print-
Properties catInstance

This program outputs the following:
----------- Program+Car WheelCount: 4 Year: 2009
Model: Focus Make: Ford ----------- Program+Cat
Name: Mittens Age: 3

Example: Setting Private Fields

In addition to discovering types, we can dynamically in-
voke methods and set properties:
let dynamicSet x propName propValue = let prop-
erty = x.GetType().GetProperty(propName) prop-
erty.SetValue(x, propValue, null)

Reflection is particularly remarkable in that it can
read/write private fields, even on objects which appear
to be immutable. In particular, we can explore and ma-
nipulate the underlying properties of an F# list:
> open System.Reflection let x = [1;2;3;4;5] let
lastNode = x.Tail.Tail.Tail.Tail;; val x : int list =
[1; 2; 3; 4; 5] val lastNode : int list = [5] > lastN-
ode.GetType().GetFields(BindingFlags.NonPublic
||| BindingFlags.Instance) |> Array.map (fun field ->
field.Name);; val it : string array = [|"__Head"; "__Tail"|]
> let tailField = lastNode.GetType().GetField("__Tail”,
BindingFlags.NonPublic ||| BindingFlags.Instance);;
val tailField : FieldInfo = Mi-
crosoft.FSharp.Collections.FSharpList`1[System.Int32]
__Tail > tailField.SetValue(lastNode, x);; (* circular list
*) val it : unit = () > x |> Seq.take 20 |> Seq.to_list;; val
it : int list = [1; 2; 3; 4; 5; 1; 2; 3; 4; 5; 1; 2; 3; 4; 5; 1; 2;
3; 4; 5]

The example above mutates the list in place and to pro-
duce a circularly linked list. In .NET, “immutable”
doesn't really mean immutable and private members are
mostly an illusion.

Note: The power of reflection has definite se-
curity implications, but a full discussion of re-
flection security is far outside of the scope of
this section. Readers are encouraged to visit
the Security Considerations for Reflection ar-
ticle on MSDN for more information.

6.5.2 Microsoft.FSharp.Reflection
Namespace

While .NET’s built-in reflection API is useful, the
F# compiler performs a lot of magic which makes
built-in types like unions, tuples, functions, and other
built-in types appear strange using vanilla reflection.

http://msdn.microsoft.com/en-us/library/system.type_members.aspx
http://msdn.microsoft.com/en-us/library/stfy7tfc(VS.100).aspx

6.5. REFLECTION 83

The Microsoft.FSharp.Reflection namespace provides a
wrapper for exploring F# types.
open System.Reflection open Mi-
crosoft.FSharp.Reflection let explore x = let t =
x.GetType() if FSharpType.IsTuple(t) then let fields =
FSharpValue.GetTupleFields(x) |> Array.map string |>
fun strings -> System.String.Join(", ", strings) printfn
“Tuple: (%s)" fields elif FSharpType.IsUnion(t) then let
union, fields = FSharpValue.GetUnionFields(x, t) printfn
“Union: %s(%A)" union.Name fields else printfn “Got
another type”

Using fsi:
> explore (Some(“Hello world”));; Union: Some([|"Hello
world"|]) val it : unit = () > explore (7, “Hello world”);;
Tuple: (7, Hello world) val it : unit = () > explore
(Some(“Hello world”));; Union: Some([|"Hello world"|])
val it : unit = () > explore [1;2;3;4];; Union: Cons([|1;
[2; 3; 4]|]) val it : unit = () > explore “Hello world";; Got
another type

6.5.3 Working With Attributes

.NET attributes and reflection go hand-in-hand. At-
tributes allow programmers to decorate classes, methods,
members, and other source code with metadata used at
runtime. Many .NET classes use attributes to annotate
code in a variety of ways; it is only possible to access
and interpret attributes through reflection. This section
will provide a brief overview of attributes. Readers inter-
ested in amore complete overview are encouraged to read
MSDN’s Extending Metadata With Attributes series.
Attributes are defined using [<AttributeName>], a nota-
tion already seen in a variety of places in previous chap-
ters of this book. The .NET framework includes a num-
ber of built-in attributes, including:

• System.ObsoleteAttribute - used to mark source
code intended to be removed in future versions.

• System.FlagsAttribute - indicates that an enumera-
tion can be treated as a bit field.

• System.SerializableAttribute - indicates that class
can be serialized.

• System.Diagnostics.DebuggerStepThroughAttribute
- indicates that the debugger should not step into a
method unless it contains a break point.

We can create custom attributes by defining a new type
which inherits from System.Attribute:
type MyAttribute(text : string) = inherit Sys-
tem.Attribute() do printfn “MyAttribute created. Text:
%s” text member this.Text = text [<MyAttribute(“Hello

world”)>] type MyClass() = member this.SomeProperty
= “This is a property”

We can access attribute using reflection:
> let x = new MyClass();; val x : MyClass >
x.GetType().GetCustomAttributes(true);; My-
Attribute created. Text: Hello world val
it : obj [] = [|System.SerializableAttribute
{TypeId = System.SerializableAttribute;};
FSI_0028+MyAttribute {Text = “Hello world";
TypeId = FSI_0028+MyAttribute;}; Mi-
crosoft.FSharp.Core.CompilationMappingAttribute
{SequenceNumber = 0; SourceConstruct-
Flags = ObjectType; TypeId = Mi-
crosoft.FSharp.Core.CompilationMappingAttribute;
VariantNumber = 0;}|]

The MyAttribute class has the side-effect of printing to
the console on instantiation, demonstrating that MyAt-
tribute does not get constructed when instances of My-
Class are created.

Example: Encapsulating Singleton Design Pattern

Attributes are often used to decorate classes with any kind
of ad-hoc functionality. For example, let’s say we wanted
to control whether single or multiple instances of classes
are created based on an attribute:
type ConstructionAttribute(singleInstance : bool) =
inherit System.Attribute() member this.IsSingleton
= singleInstance let singletons = new Sys-
tem.Collections.Generic.Dictionary<System.Type,obj>()
let make() : 'a = let newInstance() = Sys-
tem.Activator.CreateInstance<'a>() let attributes =
typeof<'a>.GetCustomAttributes(typeof<ConstructionAttribute>,
true) let singleInstance = if attributes.Length > 0 then
let contructionAttribute = attributes.[0] :?> Con-
structionAttribute contructionAttribute.IsSingleton
else false if singleInstance then match single-
tons.TryGetValue(typeof<'a>) with | true, v ->
v :?> 'a | _ -> let instance = newInstance() sin-
gletons.Add(typeof<'a>, instance) instance else
newInstance() [<ConstructionAttribute(true)>] type
SingleOnly() = do printfn “SingleOnly contruc-
tor” [<ConstructionAttribute(false)>] type NewAl-
ways() = do printfn “NewAlways constructor” let x =
make<SingleOnly>() let x' = make<SingleOnly>() let y
= make<NewAlways>() let y' = make<NewAlways>()
printfn “x = x': %b” (x = x') printfn “y = y': %b” (y = y')
System.Console.ReadKey(true) |> ignore

This program outputs the following:
SingleOnly constructor NewAlways constructor NewAl-
ways constructor x = x': true y = y': false
Using the attribute above, we've completely abstracted

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/fsharp.core/microsoft.fsharp.reflection.html
http://msdn.microsoft.com/en-us/library/5x6cd29c(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.obsoleteattribute.aspx
http://msdn.microsoft.com/en-us/library/system.flagsattribute.aspx
http://msdn.microsoft.com/en-us/library/system.serializableattribute.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debuggerstepthroughattribute.aspx
http://msdn.microsoft.com/en-us/library/system.attribute.aspx

84 CHAPTER 6. F# ADVANCED

away the implementation details of the singleton design
pattern, reducing it down to a single attribute. Its worth
noting that the program above hard-codes a value of true
or false into the attribute constructor; if we wanted to, we
could pass a string representing a key from the applica-
tion’s config file and make class construction dependent
on the config file.

6.6 Computation Expressions

Computation expressions are easily the most difficult,
yet most powerful language constructs to understand in
F#.

6.6.1 Monad Primer

Computation expressions are inspired by Haskell monads,
which in turn are inspired by the mathematical concept
of monads in category theory. To avoid all of the abstract
technical and mathematical theory underlying monads, a
“monad” is, in very simple terms, a scary sounding word
whichmeans execute this function and pass its return value
to this other function.

Note: The designers of F# use term “com-
putation expression” and “workflow” because
it’s less obscure and daunting than the word
“monad.” The author of this book prefers
“monad” to emphasize the parallel between the
F# andHaskell (and, strictly as an aside, it’s just
a neat sounding five-dollar word).

Monads in Haskell
Haskell is interesting because it’s a functional program-
ming language where all statements are executed lazily,
meaning Haskell doesn’t compute values until they are ac-
tually needed. While this gives Haskell some unique fea-
tures such as the capacity to define “infinite” data struc-
tures, it also makes it hard to reason about the execution
of programs since you can't guarantee that lines of code
will be executed in any particular order (if at all).
Consequently, it’s quite a challenge to do things which
need to be executed in a sequence, which includes any
form of I/O, acquiring locks objects in multithreaded
code, reading/writing to sockets, and any conceivable ac-
tion which has a side-effect on any memory elsewhere in
our application. Haskell manages sequential operations
using something called a monad, which can be used to
simulate state in an immutable environment.
Visualizing Monads with F#
To visualize monads, let’s take some everyday F# code
written in imperative style:
let read_line() = System.Console.ReadLine() let
print_string(s) = printf "%s” s print_string “What’s your

name? " let name = read_line() print_string (“Hello, " +
name)

We can re-write the read_line and print_string functions
to take an extra parameter, namely a function to exe-
cute once our computation completes. We’d end up with
something that looks more like this:
let read_line(f) = f(System.Console.ReadLine()) let
print_string(s, f) = f(printf "%s” s) print_string(“What’s
your name? ", fun () -> read_line(fun name ->
print_string(“Hello, " + name, fun () -> ())))

If you can understand this much, then you can understand
any monad.
Of course, it is perfectly reasonable to saywhat masochis-
tic reason would anyone have for writing code like that?
All it does it print out “Hello, Steve” to the console! Af-
ter all, C#, Java, C++, or other languages we know and
love execute code in exactly the order specified—in other
words, monads solve a problem in Haskell which simply
doesn't exist in imperative languages. Consequently, the
monad design pattern is virtually unknown in imperative
languages.
However, monads are occasionally useful for modeling
computations which are difficult to capture in an imper-
ative style.
The Maybe Monad
A well-known monad, the Maybe monad, represents a
short-circuited computation which should “bail out” if
any part of the computation fails. Using a simple exam-
ple, let’s say we wanted to write a function which asks the
user for 3 integer inputs between 0 and 100 (inclusive)
-- if at any point, the user enters an input which is non-
numeric or falls out of our range, the entire computation
should be aborted. Traditionally, we might represent this
kind of program using the following:
let addThreeNumbers() = let getNum msg = printf "%s”
msg // NOTE: return values from .Net methods that ac-
cept 'out' parameters are exposed to F# as tuples. match
System.Int32.TryParse(System.Console.ReadLine())
with | (true, n) when n >= 0 && n <= 100 -> Some(n) | _
-> None match getNum "#1: " with | Some(x) -> match
getNum "#2: " with | Some(y) -> match getNum "#3:
" with | Some(z) -> Some(x + y + z) | None -> None |
None -> None | None -> None

Note: Admittedly, the simplicity of this pro-
gram -- grabbing a few integers -- is ridiculous,
and there are many more concise ways to write
this code by grabbing all of the values up front.
However, it might help to imagine that getNum
was a relatively expensive operation (maybe it
executes a query against a database, sends and
receives data over a network, initializes a com-

http://www.haskell.org/tutorial/functions.html#tut-infinite
http://www.haskell.org/tutorial/functions.html#tut-infinite

6.6. COMPUTATION EXPRESSIONS 85

plex data structure), and the most efficient way
to write this program requires us to bail out as
soon as we encounter the first invalid value.

This code is very ugly and redundant. However, we can
simplify this code by converting it to monadic style:
let addThreeNumbers() = let bind(input, rest) = match
System.Int32.TryParse(input()) with | (true, n) when n >=
0 && n <= 100 -> rest(n) | _ -> None let createMsg msg
= fun () -> printf "%s” msg; System.Console.ReadLine()
bind(createMsg "#1: ", fun x -> bind(createMsg "#2: ",
fun y -> bind(createMsg "#3: ", fun z -> Some(x + y +
z))))

The magic is in the bind method. We extract the return
value from our function input and pass it (or bind it) as
the first parameter to rest.
Why use monads?
The code above is still quite extravagant and verbose for
practical use, however monads are especially useful for
modeling calculations which are difficult to capture se-
quentially. Multithreaded code, for example, is notori-
ously resistant to efforts to write in an imperative style;
however it becomes remarkably concise and easy to write
in monadic style. Let’s modify our bind method above as
follows:
open System.Threading let bind(input, rest) = Thread-
Pool.QueueUserWorkItem(new WaitCallback(fun _ ->
rest(input()))) |> ignore

Now our bind method will execute a function in its own
thread. Using monads, we can write multithreaded code
in a safe, imperative style. Here’s an example in fsi
demonstrating this technique:
> open System.Threading open Sys-
tem.Text.RegularExpressions let bind(input, rest) =
ThreadPool.QueueUserWorkItem(new WaitCallback(
fun _ -> rest(input()))) |> ignore let downloadAsync (url :
string) = let printMsg msg = printfn “ThreadID = %i, Url
= %s, %s” (Thread.CurrentThread.ManagedThreadId)
url msg bind((fun () -> printMsg “Creating web-
client..."; new System.Net.WebClient()), fun webclient
-> bind((fun () -> printMsg “Downloading url...";
webclient.DownloadString(url)), fun html -> bind((fun
() -> printMsg “Extracting urls..."; Regex.Matches(html,
@"http://\char"005C\relax{}S+")), fun matches -
> printMsg (“Found " + matches.Count.ToString()
+ " links”)))) ["http://www.google.com/";
"http://microsoft.com/"; "http://www.wordpress.com/";
"http://www.peta.org"] |> Seq.iter downloadAsync;;
val bind : (unit -> 'a) * ('a -> unit) -> unit val down-
loadAsync : string -> unit > ThreadID = 5, Url =
http://www.google.com/, Creating webclient... Threa-
dID = 11, Url = http://microsoft.com/, Creating web-
client... ThreadID = 5, Url = http://www.peta.org,

Creating webclient... ThreadID = 11, Url =
http://www.wordpress.com/, Creating webclient...
ThreadID = 5, Url = http://microsoft.com/, Download-
ing url... ThreadID = 11, Url = http://www.google.com/,
Downloading url... ThreadID = 11, Url =
http://www.peta.org, Downloading url... ThreadID = 13,
Url = http://www.wordpress.com/, Downloading url...
ThreadID = 11, Url = http://www.google.com/, Extract-
ing urls... ThreadID = 11, Url = http://www.google.com/,
Found 21 links ThreadID = 11, Url = http:
//www.peta.org, Extracting urls... ThreadID = 11, Url =
http://www.peta.org, Found 111 links ThreadID = 5, Url
= http://microsoft.com/, Extracting urls... ThreadID = 5,
Url = http://microsoft.com/, Found 1 links ThreadID =
13, Url = http://www.wordpress.com/, Extracting urls...
ThreadID = 13, Url = http://www.wordpress.com/,
Found 132 links

Its interesting to notice that Google starts downloading on
thread 5 and finishes on thread 11. Additionally, thread
11 is shared betweenMicrosoft, Peta, andGoogle at some
point. Each time we call bind, we pull a thread out of
.NET’s threadpool, when the function returns the thread
is released back to the threadpool where another thread
might pick it up again—its wholly possible for async func-
tions to hop between any number of threads throughout
their lifetime.
This technique is so powerful that it’s baked into F# li-
brary in the form of the async workflow.

6.6.2 Defining Computation Expressions

Computation expressions are fundamentally the same
concept as seen above, although they hide the complexity
of monadic syntax behind a thick layer of syntactic sugar.
A monad is a special kind of class which must have the
following methods: Bind, Delay, and Return.
We can rewrite our Maybe monad described earlier as
follows:
type MaybeBuilder() = member this.Bind(x, f) = match
x with | Some(x) when x >= 0 && x <= 100 -> f(x) | _ ->
None member this.Delay(f) = f() member this.Return(x)
= Some x

We can test this class in fsi:
> type MaybeBuilder() = member this.Bind(x, f) =
printfn “this.Bind: %A” x match x with | Some(x) when
x >= 0 && x <= 100 -> f(x) | _ -> None member
this.Delay(f) = f() member this.Return(x) = Some x let
maybe = MaybeBuilder();; type MaybeBuilder = class
new : unit ->MaybeBuilder member Bind : x:int option *
f:(int -> 'a0 option) -> 'a0 option member Delay : f:(unit
-> 'a0) -> 'a0 member Return : x:'a0 -> 'a0 option end val
maybe : MaybeBuilder > maybe.Delay(fun () -> let x =
12 maybe.Bind(Some 11, fun y -> maybe.Bind(Some 30,

https://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows

86 CHAPTER 6. F# ADVANCED

fun z -> maybe.Return(x + y + z))));; this.Bind: Some
11 this.Bind: Some 30 val it : int option = Some 53 >
maybe.Delay(fun () -> let x = 12maybe.Bind(Some−50,
fun y -> maybe.Bind(Some 30, fun z -> maybe.Return(x
+ y + z))));; this.Bind: Some −50 val it : int option =
None

Syntax Sugar

Monads are powerful, but beyond two or three variables,
the number of nested functions becomes cumbersome to
work with. F# provides syntactic sugar which allows us
to write the same code in a more readable fashion. Work-
flows are evaluated using the form builder { comp-expr }.
For example, the following pieces of code are equivalent:

Note: You probably noticed that the sugared
syntax is strikingly similar to the syntax used
to declare sequence expressions, seq { expr }.
This is not a coincidence. In the F# library,
sequences are defined as computation expres-
sions and used as such. The async workflow
is another computation expression you'll en-
counter while learning F#.

The sugared form reads like normal F#. The code let x =
12 behaves as expected, but what is let! doing? Notice
that we say let! y = Some 11, but the value y has the
type int rather than int option. The construct let! y =
... invokes a function called maybe.Bind(x, f), where the
value y is bound to parameter passed into the f function.
Similarly, return ... invokes a function called
maybe.Return(x). Several new keywords de-sugar
to some other construct, including ones you've already
seen in sequence expressions like yield and yield!, as well
as new ones like use and use!.
This fsi sample shows how easy it is to use our maybe
monad with computation expression syntax:
> type MaybeBuilder() = member this.Bind(x, f) =
printfn “this.Bind: %A” x match x with | Some(x) when
x >= 0 && x <= 100 -> f(x) | _ -> None member
this.Delay(f) = f() member this.Return(x) = Some x let
maybe = MaybeBuilder();; type MaybeBuilder = class
new : unit -> MaybeBuilder member Bind : x:int option
* f:(int -> 'a0 option) -> 'a0 option member Delay :
f:(unit -> 'a0) -> 'a0 member Return : x:'a0 -> 'a0 option
end val maybe : MaybeBuilder > maybe { let x = 12
let! y = Some 11 let! z = Some 30 return x + y + z };;
this.Bind: Some 11 this.Bind: Some 30 val it : int option
= Some 53 > maybe { let x = 12 let! y = Some −50 let!
z = Some 30 return x + y + z };; this.Bind: Some −50
val it : int option = None

This code does the same thing as the desugared code, only
its much much easier to read.

Dissecting Syntax Sugar

According the F# spec, workflows may be defined with
the following members:
These sugared constructs are de-sugared as follows:

6.6.3 What are Computation Expressions
Used For?

F# encourages a programming style called language ori-
ented programming to solve problems. In contrast to gen-
eral purpose programming style, language oriented pro-
gramming centers around the programmers identifying
problems they want to solve, then writing domain specific
mini-languages to tackle the problem, and finally solve
problem in the new mini-language.
Computation expressions are one of several tools F#
programmers have at their disposal for designing mini-
languages.
Its surprising how often computation expressions and
monad-like constructs occur in practice. For example,
the Haskell User Group has a collection of common and
uncommon monads, including those which compute dis-
tributions of integers and parse text. Another significant
example, an F# implementation of software transactional
memory, is introduced on hubFS.

6.6.4 Additional Resources

• Haskell.org: All About Monads - Another collection
of monads in Haskell.

https://en.wikibooks.org/wiki/F_Sharp_Programming/Sequences
https://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec2.aspx#_Toc207785614
http://spbhug.folding-maps.org/wiki/MonadsEn
http://hubfs.fpish.net/topic/None/57220
http://www.haskell.org/haskellwiki/All_About_Monads

Chapter 7

Multi-threaded and Concurrent
Applications

7.1 Async Workflows

Async workflows allow programmers to convert single-
threaded code into multi-threaded code with minimal
code changes.

7.1.1 Defining Async Workflows

Async workflows are defined using computation expres-
sion notation:
async { comp-exprs }
Here’s an example using fsi:
> let asyncAdd x y = async { return x + y };; val asyncAdd
: int -> int -> Async<int>

Notice the return type of asyncAdd. It does not actually
run a function; instead, it returns an async<int>, which is
a special kind of wrapper around our function.

The Async Module

The Async Module is used for operating on async<'a>
objects. It contains several useful methods, the most im-
portant of which are:
member RunSynchronously : computation:
Async<'T> * ?timeout:int -> 'T

Run the asynchronous computation and await
its result. If an exception occurs in the asyn-
chronous computation then an exception is re-
raised by this function. Run as part of the de-
fault AsyncGroup.

member Parallel : computationList:
seq<Async<'T>> -> Async<'T array>

Specify an asynchronous computation that,
when run, executes all the given asynchronous

computations, initially queueing each in the
thread pool. If any raise an exception then
the overall computation will raise an exception,
and attempt to cancel the others. All the sub-
computations belong to an AsyncGroup that is
a subsidiary of the AsyncGroup of the outer
computations.

member Start : computation:Async<unit> -> unit

Start the asynchronous computation in the
thread pool. Do not await its result. Run as
part of the default AsyncGroup

Async.RunSynchronously is used to run async<'a> blocks
and wait for them to return, Run.Parallel automatically
runs each async<'a> on as many processors as the CPU
has, and Async.Start runs without waiting for the opera-
tion to complete. To use the canonical example, down-
loading a web page, we can write code for downloading a
web page asyncronously as follows in fsi:
> let extractLinks url = async { let webClient = new
System.Net.WebClient() printfn “Downloading %s”
url let html = webClient.DownloadString(url : string)
printfn “Got %i bytes” html.Length let matches =
System.Text.RegularExpressions.Regex.Matches(html,
@"http://\char"005C\relax{}S+") printfn “Got %i
links” matches.Count return url, matches.Count
};; val extractLinks : string -> Async<string *
int> > Async.RunSynchronously (extractLinks
"http://www.msn.com/");; Downloading http:
//www.msn.com/ Got 50742 bytes Got 260 links
val it : string * int = ("http://www.msn.com/", 260)

async<'a> Members

async<'a> objects are constructed from the
AsyncBuilder, which has the following important
members:

87

https://en.wikibooks.org/wiki/F_Sharp_Programming/Computation_Expressions#Defining_Computation_Expressions
https://en.wikibooks.org/wiki/F_Sharp_Programming/Computation_Expressions#Defining_Computation_Expressions
http://msdn.microsoft.com/en-us/library/ee370232.aspx
http://msdn.microsoft.com/en-us/library/ee340369.aspx

88 CHAPTER 7. MULTI-THREADED AND CONCURRENT APPLICATIONS

member Bind : p:Async<'a> * f:('a -> Async<'b>)
-> Async<'b> / let!

Specify an asynchronous computation that,
when run, runs 'p', and when 'p' generates a re-
sult 'res’, runs 'f res’.

member Return : v:'a -> Async<'a> / return

Specify an asynchronous computation that,
when run, returns the result 'v'

In other words, let! executes an async workflow and binds
its return value to an identifier, return simply returns a re-
sult, and return! executes an async workflow and returns
its return value as a result.
These primitives allow us to compose async blocks within
one another. For example, we can improve on the code
above by downloading a web page asyncronously and ex-
tracting its urls asyncronously as well:
let extractLinksAsync html = async { return Sys-
tem.Text.RegularExpressions.Regex.Matches(html,
@"http://\char"005C\relax{}S+") } let down-
loadAndExtractLinks url = async { let webClient
= new System.Net.WebClient() let html = web-
Client.DownloadString(url : string) let! links =
extractLinksAsync html return url, links.Count }

Notice that let! takes an async<'a> and binds its return
value to an identifier of type 'a. We can test this code in
fsi:
> let links = downloadAndExtractLinks "http:
//www.wordpress.com/";; val links : Async<string
* int> > Async.Run links;; val it : string * int =
("http://www.wordpress.com/", 132)

What does let! do?
let! runs an async<'a> object on its own thread, then
it immediately releases the current thread back to the
threadpool. When let! returns, execution of the workflow
will continue on the new thread, which may or may not
be the same thread that the workflow started out on. As a
result, async workflows tend to “hop” between threads, an
interesting effect demonstrated explicitly here, but this is
not generally regarded as a bad thing.

7.1.2 Async Extensions Methods

7.1.3 Async Examples

Parallel Map

Consider the function Seq.map. This function is syn-
chronous, however there is no real reason why it needs

to be synchronous, since each element can be mapped in
parallel (provided we're not sharing any mutable state).
Using a module extension, we can write a parallel version
of Seq.map with minimal effort:
module Seq = let pmap f l = seq { for a in l -> async {
return f a } } |> Async.Parallel |> Async.Run

Parallel mapping can have a dramatic impact on the speed
of map operations. We can compare serial and parallel
mapping directly using the following:
open System.Text.RegularExpressions open Sys-
tem.Net let download url = let webclient = new
System.Net.WebClient() webclient.DownloadString(url
: string) let extractLinks html = Regex.Matches(html,
@"http://\char"005C\relax{}S+") let downloadAn-
dExtractLinks url = let links = (url |> download |>
extractLinks) url, links.Count let urls = [@"http:
//www.craigslist.com/"; @"http://www.msn.com/";
@"http://en.wikibooks.org/wiki/Main_Page"; @"http:
//www.wordpress.com/"; @"http://news.google.com/";]
let pmap f l = seq { for a in l -> async { return f
a } } |> Async.Parallel |> Async.Run let testSyn-
chronous() = List.map downloadAndExtractLinks
urls let testAsynchronous() = pmap downloadAn-
dExtractLinks urls let time msg f = let stopwatch =
System.Diagnostics.Stopwatch.StartNew() let temp =
f() stopwatch.Stop() printfn "(%f ms) %s: %A” stop-
watch.Elapsed.TotalMilliseconds msg temp let main() =
printfn “Start...” time “Synchronous” testSynchronous
time “Asynchronous” testAsynchronous printfn “Done.”
main()

This program has the following types:
val download : string -> string val extractLinks : string
-> MatchCollection val downloadAndExtractLinks :
string -> string * int val urls : string list val pmap : ('a ->
'b) -> seq<'a> -> 'b array val testSynchronous : unit ->
(string * int) list val testAsynchronous : unit -> (string *
int) array val time : string -> (unit -> 'a) -> unit val main
: unit -> unit

This program outputs the following:
Start... (4276.190900 ms) Synchronous: [("http:
//www.craigslist.com/", 185); ("http://www.msn.com/",
262); ("http://en.wikibooks.org/wiki/Main_Page",
190); ("http://www.wordpress.com/", 132);
("http://news.google.com/", 296)] (1939.117900
ms) Asynchronous: [|("http://www.craigslist.com/",
185); ("http://www.msn.com/", 261); ("http:
//en.wikibooks.org/wiki/Main_Page", 190);
("http://www.wordpress.com/", 132); ("http:
//news.google.com/", 294)|] Done.
The code using pmap ran about 2.2x faster because web
pages are downloaded in parallel, rather than serially.

https://en.wikibooks.org/wiki/F_Sharp_Programming/Computation_Expressions#Monad_Primer
https://en.wikibooks.org/wiki/F_Sharp_Programming/Modules_and_Namespaces#Extending_Types_and_Modules

7.1. ASYNC WORKFLOWS 89

7.1.4 Concurrency with Functional Pro-
gramming

Why Concurrency Matters

For the first 50 years of software development, program-
mers could take comfort in the fact that computer hard-
ware roughly doubled in power every 18 months. If a
programwas slow today, one could just wait a fewmonths
and the program would run at double the speed with no
change to the source code. This trend continued well into
the early 2000s, where commodity desktop machines in
2003 had more processing power than the fastest super-
computers in 1993. However, after the publication of a
well-known article, The Free Lunch is Over: A Funda-
mental Turn Toward Concurrency in Software by Herb
Sutter, processors have peaked at around 3.7 GHz in
2005. The theoretical cap in in computing speed is lim-
ited by the speed of light and the laws of physics, and
we've very nearly reached that limit. Since CPU design-
ers are unable to design faster CPUs, they have turned
toward designing processors with multiple cores and bet-
ter support for multithreading. Programmers no longer
have the luxury of their applications running twice as fast
with improving hardware—the free lunch is over.
Clockrates are not getting any faster, however the amount
of data businesses process each year grows exponentially
(usually at a rate of 10-20% per year). To meet the
growing processing demands of business, the future of all
software development is tending toward the development
of highly parallel, multithreaded applications which take
advantage of multicores processors, distributed systems,
and cloud computing.

Problems with Mutable State

Multithreaded programming has a reputation for being
notoriously difficult to get right and having a rather steep
learning curve. Why does it have this reputation? To put
it simply, mutable shared state makes programs difficult
to reason about. When two threads are mutating the same
variables, it is very easy to put the variable in an invalid
state.
Race Conditions
As a demonstration, here’s how to increment a global vari-
able using shared state (non-threaded version):
let test() = let counter = ref 0m let IncrGlobalCounter
numberOfTimes = for i in 1 .. numberOfTimes
do counter := !counter + 1m IncrGlobalCounter
1000000 IncrGlobalCounter 1000000 !counter // returns
2000000M

This works, but some programmer might notice that both
calls to IncrGlobalCounter could be computed in parallel
since there’s no real reason to wait for one call to finish

before the other. Using the .NET threading primitives
in the System.Threading namespace, a programmer can
re-write this as follows:
open System.Threading let testAsync() = let counter =
ref 0m let IncrGlobalCounter numberOfTimes = for i
in 1 .. numberOfTimes do counter := !counter + 1m
let AsyncIncrGlobalCounter numberOfTimes = new
Thread(fun () -> IncrGlobalCounter(numberOfTimes))
let t1 = AsyncIncrGlobalCounter 1000000 let t2 =
AsyncIncrGlobalCounter 1000000 t1.Start() // runs t1
asyncronously t2.Start() // runs t2 asyncronously t1.Join()
// waits until t1 finishes t2.Join() // waits until t2 finishes
!counter

This program should do the same thing as the previous
program, only it should run in ~1/2 the time. Here are
the results of 5 test runs in fsi:
> [for a in 1 .. 5 -> testAsync()];; val it : decimal list
= [1498017M; 1509820M; 1426922M; 1504574M;
1420401M]

The program is computationally sound, but it produces a
different result everytime its run. What happened?
It takes several machine instructions increment a decimal
value. In particular, the .NET IL for incrementing a dec-
imal looks like this:
// pushes static field onto evaluation stack L_0004:
ldsfld valuetype [mscorlib]System.Decimal Con-
soleApplication1.Program::i // executes Deci-
mal.op_Increment method L_0009: call val-
uetype [mscorlib]System.Decimal [mscor-
lib]System.Decimal::op_Increment(valuetype [mscor-
lib]System.Decimal) // replaces static field with value
from evaluation stack L_000e: stsfld valuetype [mscor-
lib]System.Decimal ConsoleApplication1.Program::i

Imagine that we have two threads calling this code (calls
made by Thread1 and Thread2 are interleaved):
Thread1: Loads value “100” onto its evaluation stack.
Thread1: Call add with “100” and “1” Thread2: Loads
value “100” onto its evaluation stack. Thread1: Writes
“101” back out to static variable Thread2: Call add with
“100” and “1” Thread2: Writes “101” back out to static
variable (Oops, we've incremented an old value and wrote
it back out) Thread1: Loads value “101” onto its evalu-
ation stack. Thread2: Loads value “101” onto its eval-
uation stack. (Now we let Thread1 get a little further
ahead of Thread2) Thread1: Call add with “101” and
“1” Thread1: Writes “102” back out to static variable.
Thread1: Loads value “102” to evaluation stack Thread1:
Call add with “102” and “1” Thread1: Writes “103” back
out to static variable. Thread2: Call add with “101”
and “1 Thread2: Writes “102” back out to static variable
(Oops, now we've completely overwritten work done by
Thread1!)

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://msdn.microsoft.com/en-us/library/system.threading.aspx

90 CHAPTER 7. MULTI-THREADED AND CONCURRENT APPLICATIONS

This kind of bug is called a race condition and it occurs
all the time in multithreaded applications. Unlike normal
bugs, race-conditions are often non-deterministic, mak-
ing them extremely difficult to track down.
Usually, programmers solve race conditions by introduc-
ing locks. When an object is “locked”, all other threads
are forced to wait until the object is “unlocked” before
they proceed. We can re-write the code above using a
block access to the counter variable while each thread
writes to it:
open System.Threading let testAsync() = let counter =
ref 0m let IncrGlobalCounter numberOfTimes = for i in
1 .. numberOfTimes do lock counter (fun () -> counter :=
!counter + 1m) (* lock is a function in F# library. It auto-
matically unlocks “counter” when 'fun () -> ...' completes
*) let AsyncIncrGlobalCounter numberOfTimes = new
Thread(fun () -> IncrGlobalCounter(numberOfTimes))
let t1 = AsyncIncrGlobalCounter 1000000 let t2 =
AsyncIncrGlobalCounter 1000000 t1.Start() // runs t1
asyncronously t2.Start() // runs t2 asyncronously t1.Join()
// waits until t1 finishes t2.Join() // waits until t2 finishes
!counter

The lock guarantees each thread exclusive access to
shared state and forces each thread to wait on the other
while the code counter := !counter + 1m runs to comple-
tion. This function now produces the expected result.
Deadlocks
Locks force threads to wait until an object is unlocked.
However, locks often lead to a new problem: Let’s say
we have ThreadA and ThreadB which operate on two
corresponding pieces of shared state, StateA and StateB.
ThreadA locks stateA and stateB, ThreadB locks stateB
and stateA. If the timing is right, when ThreadA needs
to access stateB, its waits until ThreadB unlocks stateB;
when ThreadB needs to access stateA, it can't proceed
either since stateA is locked by ThreadA. Both threads
mutually block one another, and they are unable to pro-
ceed any further. This is called a deadlock.
Here’s some simple code which demonstrates a deadlock:
open System.Threading let testDeadlock() = let stateA
= ref “Shared State A” let stateB = ref “Shared State
B” let threadA = new Thread(fun () -> printfn “threadA
started” lock stateA (fun () -> printfn “stateA: %s”
!stateA Thread.Sleep(100) // pauses thread for 100
ms. Simimulates busy processing lock stateB (fun () ->
printfn “stateB: %s” !stateB)) printfn “threadA finished”)
let threadB = new Thread(fun () -> printfn “threadB
started” lock stateB (fun () -> printfn “stateB: %s” !stateB
Thread.Sleep(100) // pauses thread for 100 ms. Sim-
imulates busy processing lock stateA (fun () -> printfn
“stateA: %s” !stateA)) printfn “threadB finished”)
printfn “Starting...” threadA.Start() threadB.Start()
threadA.Join() threadB.Join() printfn “Finished...”

These kinds of bugs occur all the time in multithreaded
code, although they usually aren't quite as explicit as the
code shown above.

Why Functional Programming Matters

To put it bluntly, mutable state is enemy of multithreaded
code. Functional programming often simplifies mul-
tithreading tremendously: since values are immutable
by default, programmers don't need to worry about one
thread mutating the value of shared state between two
threads, so it eliminates a whole class of multithreading
bugs related to race conditions. Since there are no race
conditions, there’s no reason to use locks either, so im-
mutability eliminates another whole class of bugs related
to deadlocks as well.

7.2 MailboxProcessor Class

F#'s MailboxProcessor class is essentially a dedicated
message queue running on its own logical thread of con-
trol. Any thread can send the MailboxProcessor a mes-
sage asynchronously or synchronously, allowing threads
to communicate between one another through message
passing. The “thread” of control is actually a lightweight
simulated thread implemented via asynchronous reac-
tions to messages. This style of message-passing concur-
rency is inspired by the Erlang programming language.

7.2.1 Defining MailboxProcessors

MailboxProcessors are created using the
MailboxProcessor.Start method which has the type Start
: initial:(MailboxProcessor<'msg> -> Async<unit>) *
?asyncGroup:AsyncGroup -> MailboxProcessor<'msg>:
let counter = MailboxProcessor.Start(fun inbox -> let
rec loop n = async { do printfn “n = %d, waiting...” n
let! msg = inbox.Receive() return! loop(n+msg) } loop 0)

The value inbox has the type MailboxProcessor<'msg>
and represents the message queue. The method in-
box.Receive() dequeues the first message from the mes-
sage queue and binds it to the msg identifier. If there are
no messages in queue, Receive releases the thread back to
the threadpool and waits for further messages. No threads
are blocked while Receive waits for further messages.
We can experiment with counter in fsi:
> let counter = MailboxProcessor.Start(fun inbox ->
let rec loop n = async { do printfn “n = %d, waiting...”
n let! msg = inbox.Receive() return! loop(n+msg) }
loop 0);; val counter : MailboxProcessor<int> n = 0,
waiting... > counter.Post(5);; n = 5, waiting... val it : unit
= () > counter.Post(20);; n = 25, waiting... val it : unit

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/FSharp.Core/Microsoft.FSharp.Control.type_MailboxProcessor-1.html

7.2. MAILBOXPROCESSOR CLASS 91

= () > counter.Post(10);; n = 35, waiting... val it : unit = ()

7.2.2 MailboxProcessor Methods

There are several usefulmethods in theMailboxProcessor
class:
static member Start : ini-
tial:(MailboxProcessor<'msg> -> Async<unit>)
* ?asyncGroup:AsyncGroup -> MailboxProces-
sor<'msg>

Create and start an instance of a MailboxPro-
cessor. The asynchronous computation exe-
cuted by the processor is the one returned by
the 'initial' function.

member Post : message:'msg -> unit

Post a message to the message queue of the
MailboxProcessor, asynchronously.

member PostAndReply : buildMes-
sage:(AsyncReplyChannel<'reply> -> 'msg) *
?timeout:int * ?exitContext:bool -> 'reply

Post a message to the message queue of the
MailboxProcessor and await a reply on the
channel. The message is produced by a sin-
gle call to the first function which must build
a message containing the reply channel. The
receiving MailboxProcessor must process this
message and invoke the Reply method on the
reply channel precisely once.

member Receive : ?timeout:int -> Async<'msg>

Return an asynchronous computation which
will consume the first message in arrival or-
der. No thread is blocked while waiting for
further messages. Raise a TimeoutException
if the timeout is exceeded.

7.2.3 Two-way Communication

Just as easily as we can send messages to MailboxProces-
sors, a MailboxProcessor can send replies back to con-
sumers. For example, we can interrogate the value of
a MailboxProcessor using the PostAndReply method as
follows:
type msg = | Incr of int | Fetch of AsyncReplyChan-
nel<int> let counter = MailboxProcessor.Start(fun inbox
-> let rec loop n = async { let! msg = inbox.Receive()
match msg with | Incr(x) -> return! loop(n + x) |

Fetch(replyChannel) -> replyChannel.Reply(n) return!
loop(n) } loop 0)

The msg union wraps two types of messages: we
can tell the MailboxProcessor to increment, or have
it send its contents to a reply channel. The type
AsyncReplyChannel<'a> exposes a single method, mem-
ber Reply : 'reply -> unit. We can use this class in fsi as
follows:
> counter.Post(Incr 7);; val it : unit = () >
counter.Post(Incr 50);; val it : unit = () >
counter.PostAndReply(fun replyChannel -> Fetch
replyChannel);; val it : int = 57

Notice that PostAndReply is a syncronous method.

Encapsulating MailboxProcessors with Objects

Often, we don't want to expose the implementation details
of our classes to consumers. For example, we can re-write
the example above as a class which exposes a few select
methods:
type countMsg = | Die | Incr of int | Fetch of AsyncRe-
plyChannel<int> type counter() = let innerCounter =
MailboxProcessor.Start(fun inbox -> let rec loop n =
async { let! msg = inbox.Receive() match msg with | Die
-> return () | Incr x -> return! loop(n + x) | Fetch(reply)
-> reply.Reply(n); return! loop n } loop 0) mem-
ber this.Incr(x) = innerCounter.Post(Incr x) member
this.Fetch() = innerCounter.PostAndReply((fun reply
-> Fetch(reply)), timeout = 2000) member this.Die() =
innerCounter.Post(Die)

7.2.4 MailboxProcessor Examples

Prime Number Sieve

Rob Pike delivered a fascinating presentation at a Google
TechTalk on the NewSqueak programming language.
NewSqueak’s approach to concurrency uses channels,
analogous to MailboxProcessors, for inter-thread com-
munication. Toward the end of the presentation, he
demonstrates how to implement a prime number sieve us-
ing these channels. The following is an implementation
of prime number sieve based on Pike’s NewSqueak code:
type 'a seqMsg = | Die | Next of AsyncReplyChannel<'a>
type primes() = let counter(init) = MailboxProces-
sor.Start(fun inbox -> let rec loop n = async { let! msg
= inbox.Receive() match msg with | Die -> return () |
Next(reply) -> reply.Reply(n) return! loop(n + 1) } loop
init) let filter(c : MailboxProcessor<'a seqMsg>, pred)
= MailboxProcessor.Start(fun inbox -> let rec loop() =
async { let! msg = inbox.Receive() match msg with | Die
-> c.Post(Die) return() | Next(reply) -> let rec filter' n

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/FSharp.Core/Microsoft.FSharp.Control.type_AsyncReplyChannel-1.html
https://www.youtube.com/watch?v=hB05UFqOtFA

92 CHAPTER 7. MULTI-THREADED AND CONCURRENT APPLICATIONS

= if pred n then async { return n } else async {let! m
= c.PostAndAsyncReply(Next) return! filter' m } let!
testItem = c.PostAndAsyncReply(Next) let! filteredItem
= filter' testItem reply.Reply(filteredItem) return! loop()
} loop()) let processor = MailboxProcessor.Start(fun
inbox -> let rec loop (oldFilter : MailboxProcessor<int
seqMsg>) prime = async { let! msg = inbox.Receive()
match msg with | Die -> oldFilter.Post(Die) return()
| Next(reply) -> reply.Reply(prime) let newFilter
= filter(oldFilter, (fun x -> x % prime <> 0)) let!
newPrime = oldFilter.PostAndAsyncReply(Next) re-
turn! loop newFilter newPrime } loop (counter(3))
2) member this.Next() = processor.PostAndReply(
(fun reply -> Next(reply)), timeout = 2000) interface
System.IDisposable with member this.Dispose() =
processor.Post(Die) static member upto max = [use p =
new primes() let lastPrime = ref (p.Next()) while !last-
Prime <= max do yield !lastPrime lastPrime := p.Next()]

counter represents an infinite list of numbers from
n..infinity.
filter is simply a filter for another MailboxProcessor. Its
analogous to Seq.filter.
processor is essentially an iterative filter: we seed our
prime list with the first prime, 2 and a infinite list of num-
bers from 3..infinity. Each time we process a message,
we return the prime number, then replace our infinite list
with a new list which filters out all numbers divisible by
our prime. The head of each new filtered list is the next
prime number.
So, the first time we call Next, we get back a 2 and re-
place our infinite list with all numbers not divisible by
two. We call next again, we get back the next prime, 3,
and filter our list again for all numbers divisible by 3. We
call next again, we get back the next prime, 5 (we skip 4
since its divisible by 2), and filter all numbers divisible by
5. This process repeats indefinitely. The end result is a
prime number sieve with an identical implementation to
the Sieve of Eratosthenes.
We can test this class in fsi:
> let p = new primes();; val p : primes > p.Next();; val it
: int = 2 > p.Next();; val it : int = 3 > p.Next();; val it :
int = 5 > p.Next();; val it : int = 7 > p.Next();; val it : int
= 11 > p.Next();; val it : int = 13 > p.Next();; val it : int
= 17 > primes.upto 100;; val it : int list = [2; 3; 5; 7; 11;
13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71;
73; 79; 83; 89; 97]

Chapter 8

F# Tools

8.1 Lexing and Parsing

Lexing and parsing is a very handy way to convert
source-code (or other human-readable input which has
a well-defined syntax) into an abstract syntax tree (AST)
which represents the source-code. F# comes with two
tools, FsLex and FsYacc, which are used to convert input
into an AST.
FsLex and FsYacc have more or less the same speci-
fication as OCamlLex and OCamlYacc, which in turn
are based on the Lex and Yacc family of lexer/parser
generators. Virtually all material concerned with
OCamlLex/OCamlYacc can transfer seamlessly over to
FsLex/FsYacc. With that in mind, SooHyoung Oh’s
OCamlYacc tutorial and companion OCamlLex Tutorial
are the single best online resources to learn how to use the
lexing and parsing tools which come with F# (and OCaml
for that matter!).

8.1.1 Lexing and Parsing from a High-
Level View

Transforming input into a well-defined abstract syntax
tree requires (at minimum) two transformations:

1. A lexer uses regular expressions to convert each syn-
tactical element from the input into a token, essen-
tially mapping the input to a stream of tokens.

2. A parser reads in a stream of tokens and attempts to
match tokens to a set of rules, where the end result
maps the token stream to an abstract syntax tree.

It is certainly possible to write a lexer which generates the
abstract syntax tree directly, but this only works for the
most simplistic grammars. If a grammar contains bal-
anced parentheses or other recursive constructs, optional
tokens, repeating groups of tokens, operator precedence,
or anything which can't be captured by regular expres-
sions, then it is easiest to write a parser in addition to a
lexer.
With F#, it is possible to write custom file formats, do-
main specific languages, and even full-blown compilers
for your new language.

8.1.2 Extended Example: Parsing SQL

The following code will demonstrate step-by-step how
to define a simple lexer/parser for a subset of SQL. If
you're using Visual Studio, you should add a reference to
FSharp.PowerPack.dll to your project. If you're compil-
ing on the commandline, use the -r flag to reference the
aforemented F# powerpack assembly.

Step 1: Define the Abstract Syntax Tree

We want to parse the following SQL statement:
SELECT x, y, z FROM t1 LEFT JOIN t2 INNER JOIN
t3 ON t3.ID = t2.ID WHERE x = 50 AND y = 20
ORDER BY x ASC, y DESC, z

This is a pretty simple query, and while it doesn't demon-
strate everything you can do with the language, it’s a good
start. We can model everything in this query using the
following definitions in F#:
// Sql.fs type value = | Int of int | Float of float | String
of string type dir = Asc | Desc type op = Eq | Gt | Ge |
Lt | Le // =, >, >=, <, <= type order = string * dir type
where = | Cond of (value * op * value) | And of where *
where | Or of where * where type joinType = Inner | Left
| Right type join = string * joinType * where option //
table name, join, optional “on” clause type sqlStatement
= { Table : string; Columns : string list; Joins : join list;
Where : where option; OrderBy : order list }

A record type neatly groups all of our related values into
a single object. When we finish our parser, it should be
able to convert a string in an object of type sqlStatement.

Step 2: Define the parser tokens

A token is any single identifiable element in a grammar.
Let’s look at the string we're trying to parse:
SELECT x, y, z FROM t1 LEFT JOIN t2 INNER JOIN
t3 ON t3.ID = t2.ID WHERE x = 50 AND y = 20
ORDER BY x ASC, y DESC, z

93

http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://dinosaur.compilertools.net/
http://courses.softlab.ntua.gr/compilers/2015a/ocamlyacc-tutorial.pdf
http://courses.softlab.ntua.gr/compilers/2015a/ocamllex-tutorial.pdf

94 CHAPTER 8. F# TOOLS

So far, we have several keywords (by convention, all key-
words are uppercase): SELECT, FROM, LEFT, INNER,
RIGHT, JOIN, ON, WHERE, AND, OR, ORDER, BY,
ASC, DESC, and COMMA.
There are also a few comparison operators: EQ, GT, GE,
LT, LE.
We also have non-keyword identifiers composed of
strings and numeric literals. which we’ll represent using
the keyword ID, INT, FLOAT.
Finally, there is one more token, EOF, which indicates
the end of our input stream.
Now we can create a basic parser file for FsYacc, name
the file SqlParser.fsp:
%{ open Sql %} %token <string> ID %token <int>
INT %token <float> FLOAT %token AND OR %token
COMMA %token EQ LT LE GT GE %token JOIN
INNER LEFT RIGHT ON %token SELECT FROM
WHERE ORDER BY%token ASC DESC %token EOF
// start %start start %type <string> start %% start: | {
“Nothing to see here” } %%

This is boilerplate code with the section for tokens filled
in.
Compile the parser using the following command line:
fsyacc SqlParser.fsp

Tips:

• If you haven't done so already, you should
add the F# bin directory to your PATH
environment variable.

• If you're using Visual Studio, you can
automatically generate your parser code
on each compile. Right-click on your
project file and choose “Properties”.
Navigate to the Build Events tab, and add
the following to the 'Pre-build event com-
mand line' and use the following: fsy-
acc "$(ProjectDir)SqlParser.fsp”. Also
remember to exclude this file from the
build process: right-click the file, choose
“Properties” and select “None” against
“Build Action”.

If everything works, FsYacc will generate two files, Sql-
Parser.fsi and SqlParser.fs. You'll need to add these files
to your project if they don't already exist. If you open the
SqlParser.fsi file, you'll notice the tokens you defined in
your .fsl file have been converted into a union type.

Step 3: Defining the lexer rules

Lexers convert text inputs into a stream of tokens. We
can start with the following boiler plate code:

{ // header: any valid F# can appear here. open Lexing
} // regex macros let char = ['a'-'z' 'A'-'Z'] let digit =
['0'-'9'] let int = '-'?digit+ let float = '-'?digit+ '.' digit+ let
whitespace = [' ' '\t'] let newline = "\n\r” | '\n' | '\r' // rules
rule tokenize = parse | whitespace { tokenize lexbuf }
| newline { lexbuf.EndPos <- lexbuf.EndPos.NextLine;
tokenize lexbuf; } | eof { () }

This is not “real” F# code, but rather a special language
used by FsLex.
The let bindings at the top of the file are used to define
regular expression macros. eof is a special marker used
to identify the end of a string buffer input.
rule ... = parse ... defines our lexing function, called to-
kenize above. Our lexing function consists of a series of
rules, which has two pieces: 1) a regular expression, 2)
an expression to evaluate if the regex matches, such as
returning a token. Text is read from the token stream one
character at a time until it matches a regular expression
and returns a token.
We can fill in the remainder of our lexer by adding more
matching expressions:
{ open Lexing // opening the SqlParser module to give us
access to the tokens it defines open SqlParser } let char =
['a'-'z' 'A'-'Z'] let digit = ['0'-'9'] let int = '-'?digit+ let float
= '-'?digit+ '.' digit+ let identifier = char(char|digit|['-' '_'
'.'])* let whitespace = [' ' '\t'] let newline = "\n\r” | '\n' | '\r'
rule tokenize = parse | whitespace { tokenize lexbuf } |
newline { lexbuf.EndPos <- lexbuf.EndPos.NextLine; to-
kenize lexbuf; } | int { INT(Int32.Parse(lexeme lexbuf))
} | float { FLOAT(Double.Parse(lexeme lexbuf)) } | ',' {
COMMA } | eof { EOF }

Notice the code between the {'s and }'s consists of plain
old F# code. Also notice we are returning the same to-
kens (INT, FLOAT, COMMA and EOF) that we defined
in SqlParser.fsp. As you can probably infer, the code lex-
eme lexbuf returns the string our parser matched. The
tokenize function will be converted into function which
has a return type of SqlParser.token.
We can fill in the rest of the lexer rules fairly easily:
{ open System open SqlParser open Lexing let key-
words = [“SELECT”, SELECT; “FROM”, FROM;
“WHERE”, WHERE; “ORDER”, ORDER; “BY”, BY;
“JOIN”, JOIN; “INNER”, INNER; “LEFT”, LEFT;
“RIGHT”, RIGHT; “ASC”, ASC; “DESC”, DESC;
“AND”, AND; “OR”, OR; “ON”, ON;] |> Map.ofList
let ops = ["=", EQ; "<", LT; "<=", LE; ">", GT; ">=",
GE;] |> Map.ofList } let char = ['a'-'z' 'A'-'Z'] let
digit = ['0'-'9'] let int = '-'?digit+ let float = '-'?digit+
'.' digit+ let identifier = char(char|digit|['-' '_' '.'])* let
whitespace = [' ' '\t'] let newline = "\n\r” | '\n' | '\r' let
operator = ">" | ">=" | "<" | "<=" | "=" rule tokenize
= parse | whitespace { tokenize lexbuf } | newline {
lexbuf.EndPos <- lexbuf.EndPos.NextLine; tokenize

https://en.wikibooks.org/wiki/F_Sharp_Programming/Getting_Set_Up#Adding_to_the_PATH_Environment_Variable
https://en.wikibooks.org/wiki/F_Sharp_Programming/Getting_Set_Up#Adding_to_the_PATH_Environment_Variable

8.1. LEXING AND PARSING 95

lexbuf; } | int { INT(Int32.Parse(lexeme lexbuf)) }
| float { FLOAT(Double.Parse(lexeme lexbuf)) } |
operator { ops.[lexeme lexbuf] } | identifier { match
keywords.TryFind(lexeme lexbuf) with | Some(token) ->
token | None -> ID(lexeme lexbuf) } | ',' { COMMA } |
eof { EOF }

Notice we've created a few maps, one for keywords and
one for operators. While we certainly can define these as
rules in our lexer, its generally recommended to have a
very small number of rules to avoid a “state explosion”.
To compile this lexer, execute the following code on the
commandline: fslex SqlLexer.fsl. (Try adding this file to
your project’s Build Events as well.) Then, add the file
SqlLexer.fs to the project. We can experiment with the
lexer now with some sample input:
open System open Sql let x = " SELECT x, y, z
FROM t1 LEFT JOIN t2 INNER JOIN t3 ON t3.ID
= t2.ID WHERE x = 50 AND y = 20 ORDER BY x
ASC, y DESC, z " let lexbuf = Lexing.from_string x
while not lexbuf.IsPastEndOfStream do printfn "%A”
(SqlLexer.tokenize lexbuf) Console.WriteLine("(press
any key)") Console.ReadKey(true) |> ignore

This program will print out a list of tokens matched by
the string above.

Step 4: Define the parser rules

A parser converts a stream of tokens into an abstract syn-
tax tree. We can modify our boilerplate parser as follows
(will not compile):
%{ open Sql %} %token <string> ID %token <int>
INT %token <float> FLOAT %token AND OR %token
COMMA %token EQ LT LE GT GE %token JOIN
INNER LEFT RIGHT ON %token SELECT FROM
WHERE ORDER BY %token ASC DESC %token
EOF // start %start start %type <Sql.sqlStatement> start
%% start: SELECT columnList FROM ID joinList
whereClause orderByClause EOF { { Table = $4;
Columns = $2; Joins = $5; Where = $6; OrderBy = $7 }
} value: | INT { Int($1) } | FLOAT { Float($1) } | ID {
String($1) } %%

Let’s examine the start: function. You can immediately
see that we have a list of tokens which gives a rough out-
line of a select statement. In addition to that, you can
see the F# code contained between {'s and }'s which will
be executed when the code successfully matches—in this
case, its returning an instance of the Sql.sqlStatement
record.
The F# code contains "$1”, "$2”, :$3”, etc. which vaguely
resembles regex replace syntax. Each "$#" corresponds
to the index (starting at 1) of the token in our matching
rule. The indexes become obvious when they’re anno-

tated as follows:
(* $1 $2 *) start: SELECT columnList (* $3 $4 *)
FROM ID (* $5 *) joinList (* $6 *) whereClause (*
$7 *) orderByClause (* $8 *) EOF { { Table = $4;
Columns = $2; Joins = $5; Where = $6; OrderBy = $7 } }

So, the start rule breaks our tokens into a basic shape,
which we then use to map to our sqlStatement record.
You're probably wondering where the columnList, join-
List, whereClause, and orderByClause come from—
these are not tokens, but are rather additional parse rules
which we'll have to define. Let’s start with the first rule:
columnList: | ID { [$1]} | ID COMMA columnList { $1
:: $3 }

columnList matches text in the style of “a, b, c, ... z”
and returns the results as a list. Notice this rule is defined
recursively (also notice the order of rules is not signifi-
cant). FsYacc’s match algorithm is “greedy”, meaning it
will try to match as many tokens as possible. When FsY-
acc receives an ID token, it will match the first rule, but it
also matches part of the second rule as well. FsYacc then
performs a one-token lookahead: it the next token is a
COMMA, then it will attempt to match additional tokens
until the full rule can be satisfied.

Note: The definition of columnList above is
not tail recursive, so it may throw a stack over-
flow exception for exceptionally large inputs.
A tail recursive version of this rule can be de-
fined as follows:

start: ... EOF { { Table = $4; Columns =
List.rev $2; Joins = $5; Where = $6; OrderBy
= $7 } } columnList: | ID { [$1]} | columnList
COMMA ID { $3 :: $1 }

The tail-recursive version creates the list back-
wards, so we have to reverse when we return
our final output from the parser.

We can treat the JOIN clause in the same way, however
its a little more complicated:
// join clause joinList: | { [] } // empty rule, matches 0
tokens | joinClause { [$1] } | joinClause joinList { $1 ::
$2 } joinClause: | INNER JOIN ID joinOnClause { $3,
Inner, $4 } | LEFT JOIN ID joinOnClause { $3, Left,
$4 } | RIGHT JOIN ID joinOnClause { $3, Right, $4 }
joinOnClause: | { None } | ON conditionList { Some($2)
} conditionList: | value op value { Cond($1, $2, $3) }
| value op value AND conditionList { And(Cond($1,
$2, $3), $5) } | value op value OR conditionList {
Or(Cond($1, $2, $3), $5) }

https://en.wikibooks.org/wiki/F_Sharp_Programming/Sets_and_Maps#Maps

96 CHAPTER 8. F# TOOLS

joinList is defined in terms of several functions. This re-
sults because there are repeating groups of tokens (such
as multiple tables being joined) and optional tokens (the
optional “ON” clause). You've already seen that we han-
dle repeating groups of tokens using recursive rules. To
handle optional tokens, we simply break the optional syn-
tax into a separate function, and create an empty rule to
represent 0 tokens.
With this strategy in mind, we can write the remaining
parser rules:
%{ open Sql %} %token <string> ID %token <int>
INT %token <float> FLOAT %token AND OR %token
COMMA %token EQ LT LE GT GE %token JOIN
INNER LEFT RIGHT ON %token SELECT FROM
WHERE ORDER BY%token ASC DESC %token EOF
// start %start start %type <Sql.sqlStatement> start %%
start: SELECT columnList FROM ID joinList where-
Clause orderByClause EOF { { Table = $4; Columns =
List.rev $2; Joins = $5; Where = $6; OrderBy = $7 } }
columnList: | ID { [$1]} | columnList COMMA ID {
$3 :: $1 } // join clause joinList: | { [] } | joinClause
{ [$1] } | joinClause joinList { $1 :: $2 } joinClause: |
INNER JOIN ID joinOnClause { $3, Inner, $4 } | LEFT
JOIN ID joinOnClause { $3, Left, $4 } | RIGHT JOIN
ID joinOnClause { $3, Right, $4 } joinOnClause: | {
None } | ON conditionList { Some($2) } conditionList:
| value op value { Cond($1, $2, $3) } | value op value
AND conditionList { And(Cond($1, $2, $3), $5) } |
value op value OR conditionList { Or(Cond($1, $2, $3),
$5) } // where clause whereClause: | { None } | WHERE
conditionList { Some($2) } op: EQ { Eq } | LT { Lt
} | LE { Le } | GT { Gt } | GE { Ge } value: | INT {
Int($1) } | FLOAT { Float($1) } | ID { String($1) } //
order by clause orderByClause: | { [] } | ORDER BY
orderByList { $3 } orderByList: | orderBy { [$1] } |
orderBy COMMA orderByList { $1 :: $3 } orderBy: |
ID { $1, Asc } | ID ASC { $1, Asc } | ID DESC { $1,
Desc} %%

Step 5: Piecing Everything Together

Here is the complete code for our lexer/parser:
SqlParser.fsp
%{ open Sql %} %token <string> ID %token <int>
INT %token <float> FLOAT %token AND OR %token
COMMA %token EQ LT LE GT GE %token JOIN
INNER LEFT RIGHT ON %token SELECT FROM
WHERE ORDER BY%token ASC DESC %token EOF
// start %start start %type <Sql.sqlStatement> start %%
start: SELECT columnList FROM ID joinList where-
Clause orderByClause EOF { { Table = $4; Columns =
List.rev $2; Joins = $5; Where = $6; OrderBy = $7 } }
columnList: | ID { [$1]} | columnList COMMA ID {
$3 :: $1 } // join clause joinList: | { [] } | joinClause
{ [$1] } | joinClause joinList { $1 :: $2 } joinClause: |

INNER JOIN ID joinOnClause { $3, Inner, $4 } | LEFT
JOIN ID joinOnClause { $3, Left, $4 } | RIGHT JOIN
ID joinOnClause { $3, Right, $4 } joinOnClause: | {
None } | ON conditionList { Some($2) } conditionList:
| value op value { Cond($1, $2, $3) } | value op value
AND conditionList { And(Cond($1, $2, $3), $5) } |
value op value OR conditionList { Or(Cond($1, $2, $3),
$5) } // where clause whereClause: | { None } | WHERE
conditionList { Some($2) } op: EQ { Eq } | LT { Lt
} | LE { Le } | GT { Gt } | GE { Ge } value: | INT {
Int($1) } | FLOAT { Float($1) } | ID { String($1) } //
order by clause orderByClause: | { [] } | ORDER BY
orderByList { $3 } orderByList: | orderBy { [$1] } |
orderBy COMMA orderByList { $1 :: $3 } orderBy: |
ID { $1, Asc } | ID ASC { $1, Asc } | ID DESC { $1,
Desc} %%

SqlLexer.fsl
{ open System open SqlParser open Lexing let key-
words = [“SELECT”, SELECT; “FROM”, FROM;
“WHERE”, WHERE; “ORDER”, ORDER; “BY”, BY;
“JOIN”, JOIN; “INNER”, INNER; “LEFT”, LEFT;
“RIGHT”, RIGHT; “ASC”, ASC; “DESC”, DESC;
“AND”, AND; “OR”, OR; “ON”, ON;] |> Map.of_list
let ops = ["=", EQ; "<", LT; "<=", LE; ">", GT; ">=",
GE;] |> Map.of_list } let char = ['a'-'z' 'A'-'Z'] let
digit = ['0'-'9'] let int = '-'?digit+ let float = '-'?digit+
'.' digit+ let identifier = char(char|digit|['-' '_' '.'])* let
whitespace = [' ' '\t'] let newline = "\n\r” | '\n' | '\r' let
operator = ">" | ">=" | "<" | "<=" | "=" rule tokenize
= parse | whitespace { tokenize lexbuf } | newline {
lexbuf.EndPos <- lexbuf.EndPos.NextLine; tokenize
lexbuf; } | int { INT(Int32.Parse(lexeme lexbuf)) }
| float { FLOAT(Double.Parse(lexeme lexbuf)) } |
operator { ops.[lexeme lexbuf] } | identifier { match
keywords.TryFind(lexeme lexbuf) with | Some(token) ->
token | None -> ID(lexeme lexbuf) } | ',' { COMMA } |
eof { EOF }

Program.fs
open System open Sql let x = " SELECT x, y, z FROM
t1 LEFT JOIN t2 INNER JOIN t3 ON t3.ID = t2.ID
WHERE x = 50 AND y = 20 ORDER BY x ASC,
y DESC, z " let lexbuf = Lexing.from_string x let
y = SqlParser.start SqlLexer.tokenize lexbuf printfn
"%A” y Console.WriteLine("(press any key)") Con-
sole.ReadKey(true) |> ignore

Altogether, our minimal SQL lexer/parser is about 150
lines of code (including non-trivial lines of code and
whitespace). I'll leave it as an exercise for the reader to
implement the remainder of the SQL language spec.
2011-03-06: I tried the above instructions with VS2010
and F# 2.0 and PowerPack 2.0. I had to make a few
changes:

8.1. LEXING AND PARSING 97

• Add “module SqlLexer” on the 2nd line of
SqlLexer.fsl

• Change Map.of_list to Map.ofList

• Add " --module SqlParser” to the command line of
fsyacc

• Add FSharp.PowerPack to get Lexing module

2011-07-06: (Sjuul Janssen) These where the steps I had
to take in order to make this work.
If you get the message “Expecting a LexBuffer<char> but
given a LexBuffer<byte> The type 'char' does not match
the type 'byte'"

• Add “fslex.exe "$(ProjectDir)SqlLexer.fsl” --
unicode” to the pre-build

• in program.fs change “let lexbuf = Lex-
ing.from_string x” to “let lexbuf = Lex-
ing.LexBuffer<_>.FromString x”

• in SqlLexer.fsi change “lexeme lexbuf” to
“LexBuffer<_>.LexemeString lexbuf”

If you get the message that some module doesn't exist or
that some module is declared multiple times. Make sure
that in the solution explorer the files come in this order:

• Sql.fs

• SqlParser.fsp

• SqlLexer.fsl

• SqlParser.fsi

• SqlParser.fs

• SqlLexer.fs

• Program.fs

If you get the message “Method
not found: 'System.Object Mi-
crosoft.FSharp.Text.Parsing.Tables`1.Interpret(Microsoft.FSharp.Core.FSharpFunc`2<Microsoft.FSharp.Text.Lexing.LexBuffer`1<Byte>,!0>,
...” Go to http://www.microsoft.com/download/en/
details.aspx?id=15834 and reinstall Visual Studio 2010
F# 2.0 Runtime SP1 (choose for repair)
2011-07-06: (mkduffi) Could someone please provide a
sample project. I have followed all of your changes but
still can not build. Thanks.

Sample

https://github.com/obeleh/FsYacc-Example
2011-07-07 (mkduffi) Thanks for posting the sample.
Here is what I did to the Program.fs file:

namespace FS module Parser = open System open Sql let
x = " SELECT x, y, z FROM t1 LEFT JOIN t2 INNER
JOIN t3 ON t3.ID = t2.ID WHERE x = 50 AND y
= 20 ORDER BY x ASC, y DESC, z " let ParseSql x
= let lexbuf = Lexing.LexBuffer<_>.FromString x let
y = SqlParser.start SqlLexer.tokenize lexbuf y let y =
(ParseSql x) printfn "%A” y Console.WriteLine("(press
any key)") Console.ReadKey(true) |> ignore

I added a C# console project for testing and this is what
is in the Program.cs file:
using System; using System.Collections.Generic;
using System.Linq; using System.Text; namespace
ConsoleApplication1 { class Program { static void
Main(string[] args) { string query = @"SELECT x,
y, z FROM t1 LEFT JOIN t2 INNER JOIN t3 ON
t3.ID = t2.ID WHERE x = 50 AND y = 20 ORDER
BY x ASC, y DESC, z"; Sql.sqlStatement stmnt =
FS.Parser.ParseSql(query); } }; }

I had to add the YaccSample project reference as well as a
reference to the FSharp.Core assembly to get this to work.
If anyone could help me figure out how to support table
aliases that would be awesome.
Thanks
2011-07-08 (Sjuul Janssen) Contact me through my
github account. I'm working on this and some other stuff.

http://www.microsoft.com/download/en/details.aspx?id=15834
http://www.microsoft.com/download/en/details.aspx?id=15834
https://github.com/obeleh/FsYacc-Example

Chapter 9

Text and image sources, contributors, and
licenses

9.1 Text
• Wikibooks:Collections Preface Source: https://en.wikibooks.org/wiki/Wikibooks%3ACollections_Preface?oldid=2842060 Contribu-

tors: RobinH, Whiteknight, Jomegat, Mike.lifeguard, Martin Kraus, Adrignola, Magesha and MadKaw
• F Sharp Programming/Introduction Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Introduction?oldid=3233033 Con-

tributors: Howard Geraint Ricketts, Jguk, AdRiley, JackPotte, Awesome Princess, QuiteUnusual, Adrignola, Tboronczyk, Chris uvic,
Codingtales, Mtreit, PokestarFan and Anonymous: 5

• F Sharp Programming/Getting Set Up Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Getting_Set_Up?oldid=3233028
Contributors: Howard Geraint Ricketts, Kwhitefoot, Jguk, AdRiley, Awesome Princess, QuiteUnusual, Toyvo~enwikibooks, Adrignola,
Jupiter258, Tiibiidii, Tuxcantfly, Quasilord, PokestarFan, Timdotdowney and Anonymous: 11

• F Sharp Programming/Basic Concepts Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Basic_Concepts?oldid=3233020
Contributors: Howard Geraint Ricketts, Kwhitefoot, Jguk, AdRiley, Awesome Princess, QuiteUnusual, Toyvo~enwikibooks, Adrignola,
Nagnatron, Myourshaw, Anatolius Nemorarius, Yuu eo, Stephenamills, PokestarFan and Anonymous: 24

• F Sharp Programming/Values and Functions Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Values_and_Functions?
oldid=3233050 Contributors: Panic2k4, Awesome Princess, Adrignola, Polybius~enwikibooks, Samal84, PokestarFan and Anonymous: 19

• F Sharp Programming/Pattern Matching Basics Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Pattern_Matching_
Basics?oldid=3233042 Contributors: Matt Crypto, Kwhitefoot, Awesome Princess, QuiteUnusual, Adrignola, NoldorinElf, Samal84,
PokestarFan and Anonymous: 7

• F Sharp Programming/Recursion Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Recursion?oldid=3233044 Contribu-
tors: Panic2k4, Matt Crypto, SocratesJedi, Kwhitefoot, Jomegat, Awesome Princess, Adrignola, Samal84, Mariusschulz, PokestarFan and
Anonymous: 6

• F Sharp Programming/Higher Order Functions Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Higher_Order_
Functions?oldid=3242383 Contributors: Panic2k4, Matt Crypto, Awesome Princess, Adrignola, NoldorinElf, Bohszy, SnoopDougDoug,
PokestarFan, Funfsharp and Anonymous: 16

• F Sharp Programming/Option Types Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Option_Types?oldid=2364878
Contributors: Awesome Princess, Adrignola and Anonymous: 2

• F Sharp Programming/Tuples and Records Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Tuples_and_Records?
oldid=3242388 Contributors: Kwhitefoot, Jomegat, Awesome Princess, Adrignola, NoldorinElf, Crocpulsar, Avicennasis, PokestarFan,
Funfsharp and Anonymous: 14

• F Sharp Programming/Lists Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists?oldid=3242548 Contributors:
Panic2k4, Jomegat, Xharze, Awesome Princess, Adrignola, Ymihere, Avicennasis, Arthirsch, Powergold1, PokestarFan, Timdotdowney,
Funfsharp and Anonymous: 10

• F Sharp Programming/Sequences Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Sequences?oldid=3176898 Contribu-
tors: Leonariso, Awesome Princess, Adrignola, Gommer~enwikibooks, Diogobernini, Mariusschulz, Gilbertbw and Anonymous: 10

• F Sharp Programming/Sets and Maps Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Sets_and_Maps?oldid=3233046
Contributors: Kwhitefoot, Xharze, Awesome Princess, Adrignola, Ymihere, Jamesdgb, Mariusschulz, PokestarFan and Anonymous: 10

• F Sharp Programming/Discriminated Unions Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Discriminated_Unions?
oldid=3233023 Contributors: Panic2k4, Awesome Princess, QuiteUnusual, Van der Hoorn, Adrignola, Pat Hawks, Mariusschulz, Pokestar-
Fan, Timdotdowney and Anonymous: 5

• F Sharp Programming/Mutable Data Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Mutable_Data?oldid=3233040
Contributors: Awesome Princess, Adrignola, NoldorinElf, Avicennasis, Joechakra, Pat Hawks, PokestarFan, Xlaech and Anonymous: 8

• F Sharp Programming/Control Flow Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Control_Flow?oldid=3081972
Contributors: Ravichandar84, Awesome Princess, Adrignola and Anonymous: 4

98

https://en.wikibooks.org/wiki/Wikibooks%253ACollections_Preface?oldid=2842060
https://en.wikibooks.org/wiki/F_Sharp_Programming/Introduction?oldid=3233033
https://en.wikibooks.org/wiki/F_Sharp_Programming/Getting_Set_Up?oldid=3233028
https://en.wikibooks.org/wiki/F_Sharp_Programming/Basic_Concepts?oldid=3233020
https://en.wikibooks.org/wiki/F_Sharp_Programming/Values_and_Functions?oldid=3233050
https://en.wikibooks.org/wiki/F_Sharp_Programming/Values_and_Functions?oldid=3233050
https://en.wikibooks.org/wiki/F_Sharp_Programming/Pattern_Matching_Basics?oldid=3233042
https://en.wikibooks.org/wiki/F_Sharp_Programming/Pattern_Matching_Basics?oldid=3233042
https://en.wikibooks.org/wiki/F_Sharp_Programming/Recursion?oldid=3233044
https://en.wikibooks.org/wiki/F_Sharp_Programming/Higher_Order_Functions?oldid=3242383
https://en.wikibooks.org/wiki/F_Sharp_Programming/Higher_Order_Functions?oldid=3242383
https://en.wikibooks.org/wiki/F_Sharp_Programming/Option_Types?oldid=2364878
https://en.wikibooks.org/wiki/F_Sharp_Programming/Tuples_and_Records?oldid=3242388
https://en.wikibooks.org/wiki/F_Sharp_Programming/Tuples_and_Records?oldid=3242388
https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists?oldid=3242548
https://en.wikibooks.org/wiki/F_Sharp_Programming/Sequences?oldid=3176898
https://en.wikibooks.org/wiki/F_Sharp_Programming/Sets_and_Maps?oldid=3233046
https://en.wikibooks.org/wiki/F_Sharp_Programming/Discriminated_Unions?oldid=3233023
https://en.wikibooks.org/wiki/F_Sharp_Programming/Discriminated_Unions?oldid=3233023
https://en.wikibooks.org/wiki/F_Sharp_Programming/Mutable_Data?oldid=3233040
https://en.wikibooks.org/wiki/F_Sharp_Programming/Control_Flow?oldid=3081972

9.2. IMAGES 99

• F Sharp Programming/Arrays Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Arrays?oldid=3233018 Contributors:
Awesome Princess, Adrignola, Mariusschulz, PokestarFan, Gilbertbw and Anonymous: 6

• F Sharp Programming/Mutable Collections Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Mutable_Collections?
oldid=3233039 Contributors: Awesome Princess, Adrignola, PokestarFan and Anonymous: 2

• F Sharp Programming/Input and Output Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Input_and_Output?oldid=
3233031 Contributors: Awesome Princess, Adrignola, PokestarFan and Anonymous: 3

• F Sharp Programming/Exception Handling Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Exception_Handling?
oldid=3233026 Contributors: Awesome Princess, PokestarFan and Anonymous: 6

• F Sharp Programming/Operator Overloading Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Operator_Overloading?
oldid=2515260 Contributors: Awesome Princess, Lost~enwikibooks, NoldorinElf and Anonymous: 2

• F Sharp Programming/Classes Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Classes?oldid=3233021 Contributors:
Awesome Princess, QuiteUnusual, Adrignola, NoldorinElf, Yuu eo, HMman, PokestarFan and Anonymous: 12

• F Sharp Programming/Inheritance Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Inheritance?oldid=3233030 Contrib-
utors: Awesome Princess, Adrignola, Preza8, PokestarFan and Anonymous: 1

• F Sharp Programming/Interfaces Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Interfaces?oldid=3233032 Contribu-
tors: Awesome Princess, Adrignola, PokestarFan and Anonymous: 4

• F Sharp Programming/Events Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Events?oldid=3233025 Contributors:
Awesome Princess, Adrignola, PokestarFan and Anonymous: 6

• F Sharp Programming/Modules and Namespaces Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Modules_and_
Namespaces?oldid=3233038 Contributors: Awesome Princess, Adrignola, Samal84, PokestarFan and Anonymous: 3

• F Sharp Programming/Units of Measure Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure?oldid=
3233049 Contributors: Awesome Princess, *nix, PokestarFan and Anonymous: 2

• F Sharp Programming/Caching Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Caching?oldid=2367579 Contributors:
Awesome Princess, Adrignola, Fishpi, ProjSHiNKiROU and Anonymous: 5

• F Sharp Programming/Active Patterns Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Active_Patterns?oldid=3233016
Contributors: Jomegat, Awesome Princess, Adrignola, Avicennasis, Jessitron, PokestarFan and Anonymous: 7

• F Sharp Programming/Advanced Data Structures Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Advanced_Data_
Structures?oldid=3233017 Contributors: JackPotte, Awesome Princess, Preza8, Jorgefioranelli, PokestarFan and Anonymous: 5

• F Sharp Programming/Reflection Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Reflection?oldid=3233045 Contribu-
tors: Awesome Princess, Avicennasis, PokestarFan and Anonymous: 1

• F Sharp Programming/Computation Expressions Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Computation_
Expressions?oldid=3233022 Contributors: HerbM, Greenrd, Recent Runes, Awesome Princess, Adrignola, Avicennasis, Pteromys42,
PokestarFan and Anonymous: 15

• F Sharp Programming/Async Workflows Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows?oldid=
3233019 Contributors: Awesome Princess, Adrignola, Jhuang~enwikibooks, Tsyselsky, PokestarFan and Anonymous: 7

• F Sharp Programming/MailboxProcessor Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/MailboxProcessor?oldid=
3233037 Contributors: Awesome Princess, Adrignola, Atcovi, Jameycc1, PokestarFan and Anonymous: 5

• F Sharp Programming/Lexing and Parsing Source: https://en.wikibooks.org/wiki/F_Sharp_Programming/Lexing_and_Parsing?oldid=
3233034 Contributors: Awesome Princess, Adrignola, Banksar, Avicennasis, Mkduffi, PokestarFan, Adino of tachmon and Anonymous: 8

9.2 Images
• File:Data_stack.svg Source: https://upload.wikimedia.org/wikipedia/commons/2/29/Data_stack.svg License: Public domain Contribu-

tors: made in Inkscape, by myself User:Boivie. Based on Image:Stack-sv.png, originally uploaded to the Swedish Wikipedia in 2004 by
sv:User:Shrimp Original artist: User:Boivie

• File:Queue_algorithmn.jpg Source: https://upload.wikimedia.org/wikipedia/commons/4/45/Queue_algorithmn.jpg License: Public do-
main Contributors: Own work Original artist: Leon22

• File:Red-black_tree_example.svg Source: https://upload.wikimedia.org/wikipedia/commons/6/66/Red-black_tree_example.svg Li-
cense: CC-BY-SA-3.0 Contributors: Own work Original artist: Cburnett

• File:Symbol_thumbs_down.svg Source: https://upload.wikimedia.org/wikipedia/commons/8/84/Symbol_thumbs_down.svg License:
Public domain Contributors: ? Original artist: ?

• File:Symbol_thumbs_up.svg Source: https://upload.wikimedia.org/wikipedia/commons/8/87/Symbol_thumbs_up.svg License: Public
domain Contributors: Own work Original artist: Pratheepps (talk · contribs)

• File:Wikibooks-logo-en-noslogan.svg Source: https://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.
svg License: CC BY-SA 3.0 Contributors: Own work Original artist: User:Bastique, User:Ramac et al.

9.3 Content license
• Creative Commons Attribution-Share Alike 3.0

https://en.wikibooks.org/wiki/F_Sharp_Programming/Arrays?oldid=3233018
https://en.wikibooks.org/wiki/F_Sharp_Programming/Mutable_Collections?oldid=3233039
https://en.wikibooks.org/wiki/F_Sharp_Programming/Mutable_Collections?oldid=3233039
https://en.wikibooks.org/wiki/F_Sharp_Programming/Input_and_Output?oldid=3233031
https://en.wikibooks.org/wiki/F_Sharp_Programming/Input_and_Output?oldid=3233031
https://en.wikibooks.org/wiki/F_Sharp_Programming/Exception_Handling?oldid=3233026
https://en.wikibooks.org/wiki/F_Sharp_Programming/Exception_Handling?oldid=3233026
https://en.wikibooks.org/wiki/F_Sharp_Programming/Operator_Overloading?oldid=2515260
https://en.wikibooks.org/wiki/F_Sharp_Programming/Operator_Overloading?oldid=2515260
https://en.wikibooks.org/wiki/F_Sharp_Programming/Classes?oldid=3233021
https://en.wikibooks.org/wiki/F_Sharp_Programming/Inheritance?oldid=3233030
https://en.wikibooks.org/wiki/F_Sharp_Programming/Interfaces?oldid=3233032
https://en.wikibooks.org/wiki/F_Sharp_Programming/Events?oldid=3233025
https://en.wikibooks.org/wiki/F_Sharp_Programming/Modules_and_Namespaces?oldid=3233038
https://en.wikibooks.org/wiki/F_Sharp_Programming/Modules_and_Namespaces?oldid=3233038
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure?oldid=3233049
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure?oldid=3233049
https://en.wikibooks.org/wiki/F_Sharp_Programming/Caching?oldid=2367579
https://en.wikibooks.org/wiki/F_Sharp_Programming/Active_Patterns?oldid=3233016
https://en.wikibooks.org/wiki/F_Sharp_Programming/Advanced_Data_Structures?oldid=3233017
https://en.wikibooks.org/wiki/F_Sharp_Programming/Advanced_Data_Structures?oldid=3233017
https://en.wikibooks.org/wiki/F_Sharp_Programming/Reflection?oldid=3233045
https://en.wikibooks.org/wiki/F_Sharp_Programming/Computation_Expressions?oldid=3233022
https://en.wikibooks.org/wiki/F_Sharp_Programming/Computation_Expressions?oldid=3233022
https://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows?oldid=3233019
https://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows?oldid=3233019
https://en.wikibooks.org/wiki/F_Sharp_Programming/MailboxProcessor?oldid=3233037
https://en.wikibooks.org/wiki/F_Sharp_Programming/MailboxProcessor?oldid=3233037
https://en.wikibooks.org/wiki/F_Sharp_Programming/Lexing_and_Parsing?oldid=3233034
https://en.wikibooks.org/wiki/F_Sharp_Programming/Lexing_and_Parsing?oldid=3233034
https://upload.wikimedia.org/wikipedia/commons/2/29/Data_stack.svg
//commons.wikimedia.org/wiki/User:Boivie
//commons.wikimedia.org/wiki/File:Stack-sv.png
https://sv.wikipedia.org/wiki/User:Shrimp
//commons.wikimedia.org/wiki/User:Boivie
https://upload.wikimedia.org/wikipedia/commons/4/45/Queue_algorithmn.jpg
//commons.wikimedia.org/wiki/User:Leon22
https://upload.wikimedia.org/wikipedia/commons/6/66/Red-black_tree_example.svg
https://en.wikipedia.org/wiki/User:Cburnett
https://upload.wikimedia.org/wikipedia/commons/8/84/Symbol_thumbs_down.svg
https://upload.wikimedia.org/wikipedia/commons/8/87/Symbol_thumbs_up.svg
//commons.wikimedia.org/w/index.php?title=User:Pratheepps&action=edit&redlink=1
//commons.wikimedia.org/w/index.php?title=User_talk:Pratheepps&action=edit&redlink=1
//commons.wikimedia.org/wiki/Special:Contributions/Pratheepps
https://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.svg
https://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.svg
//commons.wikimedia.org/wiki/User:Bastique
//commons.wikimedia.org/wiki/User:Ramac
https://creativecommons.org/licenses/by-sa/3.0/

	Preface
	What is Wikibooks?
	What is this book?
	Who are the authors?
	Wikibooks in Class
	Happy Reading!

	Introduction
	Introducing F#
	A Brief History of F#
	Why Learn F#?
	References

	F# Basics
	Getting Set Up
	Windows
	Mac OSX, Linux and UNIX

	Basic Concepts
	Major Features
	Functional Programming Contrasted with Imperative Programming
	Structure of F# Programs

	Working With Functions
	Declaring Values and Functions
	Declaring Variables
	Declaring Functions

	Pattern Matching Basics
	Pattern Matching Syntax
	Alternative Pattern Matching Syntax
	Binding Variables with Pattern Matching
	Pay Attention to F# Warnings

	Recursion and Recursive Functions
	Examples
	Tail Recursion
	Exercises
	Additional Reading

	Higher Order Functions
	Familiar Higher Order Functions
	The |> Operator
	Anonymous Functions
	Currying and Partial Functions

	Immutable Data Structures
	Option Types
	Using Option Types
	Pattern Matching Option Types
	Other Functions in the Option Module

	Tuples and Records
	Defining Tuples
	Defining Records

	Lists
	Creating Lists
	Pattern Matching Lists
	Using the List Module
	Exercises

	Sequences
	Defining Sequences
	Iterating Through Sequences Manually
	The Seq Module

	Sets and Maps
	Sets
	Maps
	Set and Map Performance

	Discriminated Unions
	Creating Discriminated Unions
	Union basics: an On/Off switch
	Holding Data In Unions: a dimmer switch
	Creating Trees
	Generalizing Unions For All Datatypes
	Examples
	Additional Reading

	Imperative Programming
	Mutable Data
	mutable Keyword
	Ref cells
	Encapsulating Mutable State

	Control Flow
	Imperative Programming in a Nutshell
	if/then Decisions
	for Loops Over Ranges
	for Loops Over Collections and Sequences
	while Loops

	Arrays
	Creating Arrays
	Working With Arrays
	Differences Between Arrays and Lists

	Mutable Collections
	List<'T> Class
	LinkedList<'T> Class
	HashSet<'T>, and Dictionary<'TKey, 'TValue> Classes
	Differences Between .NET BCL and F# Collections

	Basic I/O
	Working with the Console
	System.IO Namespace

	Exception Handling
	Try/With
	Raising Exceptions
	Try/Finally
	Defining New Exceptions
	Exception Handling Constructs

	Object Oriented Programming
	Operator Overloading
	Using Operators
	Operator Overloading
	Defining New Operators

	Classes
	Defining an Object
	Class Members
	Generic classes
	Pattern Matching Objects

	Inheritance
	Subclasses
	Working With Subclasses

	Interfaces
	Defining Interfaces
	Using Interfaces
	Examples

	Events
	Defining Events
	Adding Callbacks to Event Handlers
	Working with EventHandlers Explicitly
	Passing State To Callbacks
	Retrieving State from Callers
	Using the Event Module

	Modules and Namespaces
	Defining Modules
	Defining Namespaces

	F# Advanced
	Units of Measure
	Use Cases
	Defining Units
	Dimensionless Values
	Generalizing Units of Measure
	F# PowerPack
	External Resources

	Caching
	Partial Functions
	Memoization
	Lazy Values

	Active Patterns
	Defining Active Patterns
	Additional Resources

	Advanced Data Structures
	Stacks
	Queues
	Binary Search Trees
	Lazy Data Structures
	Additional Resources

	Reflection
	Inspecting Types
	Microsoft.FSharp.Reflection Namespace
	Working With Attributes

	Computation Expressions
	Monad Primer
	Defining Computation Expressions
	What are Computation Expressions Used For?
	Additional Resources

	Multi-threaded and Concurrent Applications
	Async Workflows
	Defining Async Workflows
	Async Extensions Methods
	Async Examples
	Concurrency with Functional Programming

	MailboxProcessor Class
	Defining MailboxProcessors
	MailboxProcessor Methods
	Two-way Communication
	MailboxProcessor Examples

	F# Tools
	Lexing and Parsing
	Lexing and Parsing from a High-Level View
	Extended Example: Parsing SQL

	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

